精英家教网 > 高中数学 > 题目详情
已知函数是定义在区间上的偶函数,且时, (1).求函数的解析式;(2).若矩形的顶点在函数的图像上,顶点轴上,求矩形的面积的最大值。
(1)f(x)=;(2)当t=1时,矩形ABCD的面积取得最大值6.
(1)当所以f(-x)=-(-x)2-(-x)+5=-x2+x+5,
又因为f(x)是偶函数,所以f(x)=f(-x)=-x2+x+5,
所以f(x)=
(2)由题意,不妨设A点在第一象限,坐标为(t,-t2-t+5)其中,
则S(t)=S ABCD=2t(-t2-t+5)=-2t3-2t2+10t.
(舍去),t2=1.
,所以S(t)在上单调递增,在上单调递减,
所以当t=1时,ABCD的面积取得极大值也是S(t)在上的最大值。
从而当t=1时,矩形ABCD的面积取得最大值6.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知二次函数f(x)=ax2+bx,且f(x+1)为偶函数,定义:满足f(x)=x的实数x称为函数f(x)的不动点,若函数f(x)有且仅有一个不动点,
(1)求f(x)的解析式;
(2)若函数g(x)= f(x)++x2在 (0,]上是单调减函数,求实数k的取值范围;
(3)在(2)的条件下,是否存在区间[m,n](m<n),使得f(x)在区间[m,n]上的值域为[km,kn]?若存在,请求出区间[m,n];若不存在,请说明理由。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知定义在R上的函数(abcd为实常数)的图象关于原点对称,且当x=1时f(x)取得极值.
(Ⅰ)求函数f(x)的解析式;
(Ⅱ)证明:对任意∈[-1,1],不等式成立;
(Ⅲ)若函数在区间(1,∞)内无零点,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

表示自然数的所有因数中最大的那个奇数,例如:9的因数有1,3,9,,10的因数有1,2,5,10,,那么               .

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

某公司生产一种产品,每年需投入固定成本0.5万元,此外每生产1百件这样的产品,还需增加投入0.25万元,经市场调查知这种产品年需求量为5百件,产品销售数量为t(百件)时,销售所得的收入为万元
(1)该公司这种产品的年生产量为x百件,生产并销售这种产品所得到的利润为当年产量x的函数f(x),求f(x);
(2)当该公司的年产量为多大时当年所获得的利润最大.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

下列结论中正确的个数是(  )
①当a<0时,=a3 ②=|a| ③函数y=-(3x-7)0的定义域是(2, +∞) ④若,则2a+b=1
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知二次函数.                  
(1)若,试判断函数零点个数;
(2)是否存在,使同时满足以下条件①对,且;②对,都有。若存在,求出的值,若不存在,请说明理由。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知.
(I)当时,解不等式
(II)当时,恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知函数上的偶函数,若对于,都有,且当时,,则的值为        (   )
A.   B.   C.    D.

查看答案和解析>>

同步练习册答案