精英家教网 > 高中数学 > 题目详情
已知二次函数f(x)=ax2+bx,且f(x+1)为偶函数,定义:满足f(x)=x的实数x称为函数f(x)的不动点,若函数f(x)有且仅有一个不动点,
(1)求f(x)的解析式;
(2)若函数g(x)= f(x)++x2在 (0,]上是单调减函数,求实数k的取值范围;
(3)在(2)的条件下,是否存在区间[m,n](m<n),使得f(x)在区间[m,n]上的值域为[km,kn]?若存在,请求出区间[m,n];若不存在,请说明理由。
(1)f(x)= -x2+x;(2)k;(3)同解析。

(1)f(x+1) ="a(x+1)" 2+b(x+1) =" ax" 2+(2a+b)x+a+b为偶函数,
∴2a+b=0,∴b=-2a,∴f(x)=ax2-2ax,′
∵函数f(x)有且仅有一个不动点,∴方程f(x)=x有且仅有一个解,
∴ax2-(2a+1)x=0有且仅有一个解,∴2a+1=0,a=-,∴f(x)= -x2+x
(2) g(x)= f(x)++x2=x+在 (0,]上是单调增函数,
当k0时,g(x)= x+在(0,+)上是单调增函数,∴不成立;′
当k>0时,g(x)= x+在(0,]上是单调减函数,∴,∴k
(3)∵f(x)= -x2+x= -(x-1)2+,∴kn,∴n<1,
∴f(x)在区间[m,n]上是单调增函数
,即,方程的两根为0,2-2k′
当2-2k>0,即k<1时,[m,n]= [0,2-2k]
当2-2k<0,即k>1时,[m,n]= [2-2k,0]′
当2-2k=0,即k=1时,[m,n] 不存在′
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)的定义域为R,对任意的,且当时,.
(Ⅰ)求证:函数f(x)为奇函数;
(Ⅱ)求证:
(Ⅲ)求函数在区间[-n,n](n)上的最大值和最小值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数
(1)求函数的定义域、值域、最小正周期;
(2)判断函数奇偶性。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知是直线上的三点,点在直线外,向量满足
(Ⅰ)求函数的表达式;
(Ⅱ)若不等式恒成立,求实数的取值范围

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数是定义在区间上的偶函数,且时, (1).求函数的解析式;(2).若矩形的顶点在函数的图像上,顶点轴上,求矩形的面积的最大值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设函数定义域为,当时,,且对于任意的,都有 
(1)求的值,并证明函数上是减函数;
(2)记△ABC的三内角A、B、C的对应边分别为a,b,c,若时,不等式恒成立,求实数的取值范围。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

记函数,它们定义域的交集为,若对任意的,,则称是集合的元素.
(1)判断函数是否是的元素;
(2)设函数,求的反函数,并判断是否是的元素;

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

定义在上的函数,如果满足:对任意,存在常数,都有成立,则称上的有界函数,其中称为函数的上界.
已知函数.
(1)当时,求函数上的值域,并判断函数上是否为有界函数,请说明理由;
(2)若函数上是以3为上界的有界函数,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题


化简

查看答案和解析>>

同步练习册答案