精英家教网 > 高中数学 > 题目详情
已知二次函数.                  
(1)若,试判断函数零点个数;
(2)是否存在,使同时满足以下条件①对,且;②对,都有。若存在,求出的值,若不存在,请说明理由。
(1)函数有一个零点;当时,,函数有两个零点。
(2)
(1) 

函数有一个零点;当时,,函数有两个零点。……6分
(2)假设存在,由①知抛物线的对称轴为x=-1,且

  
由②知对,都有


时,,其顶点为(-1,0)满足条件①,又,都有,满足条件②。∴存在,使同时满足条件①、②。……………………………14分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知函数
(1)试判断上的单调性;
(2)当时,求证:函数的值域的长度大于(闭区间[mn]的长度定义为nm).

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设函数
(1)求的单调增区间和单调减区间;
(2)若当时(其中e=2.71828…),不等式恒成立,求实数m的取值范围;
(3)若关于x的方程上恰有两个相异的实根,求实数a的取值范围。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数成等差数列.
(Ⅰ)求的值;
(Ⅱ)若a,b,c是两两不相等的正数,且a,b,c成等比数列,试判断的大小关系,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

对于定义在区间D上的函数,若存在闭区间和常数,使得对任意,都有,且对任意∈D,当时,恒成立,则称函数为区间D上的“平底型”函数.
(Ⅰ)判断函数是否为R上的“平底型”函数?   并说明理由;
(Ⅱ)设是(Ⅰ)中的“平底型”函数,k为非零常数,若不等式 对一切R恒成立,求实数的取值范围;
(Ⅲ)若函数是区间上的“平底型”函数,求的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数是定义在区间上的偶函数,且时, (1).求函数的解析式;(2).若矩形的顶点在函数的图像上,顶点轴上,求矩形的面积的最大值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

记函数,它们定义域的交集为,若对任意的,,则称是集合的元素.
(1)判断函数是否是的元素;
(2)设函数,求的反函数,并判断是否是的元素;

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数
(1)当时,求该函数的定义域和值域;
(2)如果在区间上恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数处取得极值.
(1)求的值;                                                    
(2)若关于的方程在区间上有实根,求实数的取值范围.

查看答案和解析>>

同步练习册答案