精英家教网 > 高中数学 > 题目详情
已知函数成等差数列.
(Ⅰ)求的值;
(Ⅱ)若a,b,c是两两不相等的正数,且a,b,c成等比数列,试判断的大小关系,并证明你的结论.
(Ⅰ)5(Ⅱ)
(Ⅰ)由成等差数列,得,即 ……5分
(Ⅱ) …………7分
  ………………8分
 …………10分
 
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

.已知定义在R上的函数fx)=( a , b , c , d∈R )的图象关于原点对称,且x = 1时,fx)取极小值
(Ⅰ)求fx)的解析式;
(Ⅱ)当x∈[-1,1]时,图象旧否存在两点,使得此两面三刀点处的切线互相垂直?试证明你的结论;
(Ⅲ)若[-1,1]时,求证:| f ()-f)|≤

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

某镇人口第二年比第一年增长,第三年比第二年增长,又这两年的平均增长率为,则的关系为(   ).
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设计一种正四棱柱形冰箱,它有一个冷冻室和一个冷藏室,冷藏室用两层隔板分为三个抽屉,问:如何设计它的外形尺寸,能使得冰箱体积为定值时,它的表面和三层隔板(包括冷冻室的底层)面积之和S值最小(参考数据:

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

某公司生产一种产品,每年需投入固定成本0.5万元,此外每生产1百件这样的产品,还需增加投入0.25万元,经市场调查知这种产品年需求量为5百件,产品销售数量为t(百件)时,销售所得的收入为万元
(1)该公司这种产品的年生产量为x百件,生产并销售这种产品所得到的利润为当年产量x的函数f(x),求f(x);
(2)当该公司的年产量为多大时当年所获得的利润最大.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

幂指函数在求导时,可运用对数法:在函数解析式两边求对数得,两边同时求导得,于是.运用此方法可以探求的一个单调递增区间是(   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知二次函数.                  
(1)若,试判断函数零点个数;
(2)是否存在,使同时满足以下条件①对,且;②对,都有。若存在,求出的值,若不存在,请说明理由。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

函数在区间内的图象是

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知函数上的偶函数,若对于,都有,且当时,,则的值为        (   )
A.   B.   C.    D.

查看答案和解析>>

同步练习册答案