精英家教网 > 高中数学 > 题目详情
已知函数
(1)当时,求该函数的定义域和值域;
(2)如果在区间上恒成立,求实数的取值范围.
(1)定义域为;值域为(2)
(1) 当时,
,解得
所以函数的定义域为.
,则
所以
因此函数的值域为
(2) 解法一:在区间上恒成立等价于在区间上恒成立

时,,所以满足题意.
时,是二次函数,对称轴为
时,函数在区间上是增函数,,所以满足题意;
时,函数在区间上是减函数,
解得,所以满足题意.
综上,的取值范围是
解法二:在区间上恒成立等价于在区间上恒成立
时,,得
因为,所以的取值范围是.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知定义在R上的函数(abcd为实常数)的图象关于原点对称,且当x=1时f(x)取得极值.
(Ⅰ)求函数f(x)的解析式;
(Ⅱ)证明:对任意∈[-1,1],不等式成立;
(Ⅲ)若函数在区间(1,∞)内无零点,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

.已知定义在R上的函数fx)=( a , b , c , d∈R )的图象关于原点对称,且x = 1时,fx)取极小值
(Ⅰ)求fx)的解析式;
(Ⅱ)当x∈[-1,1]时,图象旧否存在两点,使得此两面三刀点处的切线互相垂直?试证明你的结论;
(Ⅲ)若[-1,1]时,求证:| f ()-f)|≤

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设计一种正四棱柱形冰箱,它有一个冷冻室和一个冷藏室,冷藏室用两层隔板分为三个抽屉,问:如何设计它的外形尺寸,能使得冰箱体积为定值时,它的表面和三层隔板(包括冷冻室的底层)面积之和S值最小(参考数据:

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知二次函数.                  
(1)若,试判断函数零点个数;
(2)是否存在,使同时满足以下条件①对,且;②对,都有。若存在,求出的值,若不存在,请说明理由。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

是满足不等式的自然数的个数,其中
(Ⅰ)求的值;
(Ⅱ) 求的解析式;
(Ⅲ)记,令,试比较的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

规定一种运算:,例如:12=1,32=2,则函数的值域为                .

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)= +lnx的图像在点P(m,f(m))处的切线方程为y="x" ,

(1)求证:当恒成立;
(2)试讨论关于的方程: 根的个数.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

某宾馆有相同标准的床位100张,根据经验,当该宾馆的床价(即每张床每天的租金)不超过10元时,床位可以全部租出,当床位高于10元时,每提高1元,将有3张床位空闲.为了获得较好的效益,该宾馆要给床位一个合适的价格,条件是:①要方便结帐,床价应为1元的整数倍;② 该宾馆每日的费用支出为575元,床位出租的收入必须高于支出,而且高出得越多越好.若用表示床价,用表示该宾馆一天出租床位的净收入(即除去每日的费用支出后的收入)
(1)把表示成的函数,并求出其定义域;
(2)试确定该宾馆将床位定价为多少时既符合上面的两个条件,又能使净收入最多?

查看答案和解析>>

同步练习册答案