分析 先判断g(x)的零点所在的区间,再求出各个选项中函数的零点,看哪一个能满足与g(x)=4x+2x-2的零点之差的绝对值不超过0.25.
解答 解:∵f(x)=4x+2x-2在R上连续,且f($\frac{1}{4}$)=$\sqrt{2}$+$\frac{1}{2}$-2=$\sqrt{2}$-$\frac{3}{2}$<0,f($\frac{1}{2}$)=2+1-2=1>0.
设f(x)=4x+2x-2的零点为x0,则$\frac{1}{4}$<x0<$\frac{1}{2}$,
0<x0-$\frac{1}{4}$<$\frac{1}{4}$,∴|x0-$\frac{1}{4}$|<$\frac{1}{4}$.
又g(-x)=4x-1零点为x=$\frac{1}{4}$;
$g(x)={({x-\frac{1}{2}})^2}$的零点为x=$\frac{1}{2}$;
g(x)=ex-1零点为x=0;
$g(x)=ln({\frac{π}{x}-3})$零点为x=$\frac{π}{4}$,
满足题意的函数有①②.
故答案为:①②.
点评 本题考查判断函数零点所在的区间以及求函数零点的方法,属于基础题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | a>b>c | B. | b>a>c | C. | b>c>a | D. | c>b>a |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| x | 3 | 4 | 5 | 6 | 7 |
| y | 4 | 2.5 | -0.5 | 0.5 | -2 |
| A. | 增加0.9个单位 | B. | 减少0.9个单位 | C. | 增加0.72个单位 | D. | 减少0.72个单位 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 54 cm2 | B. | 24 cm2 | C. | 18 cm2 | D. | 12 cm2 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com