| A. | 54 cm2 | B. | 24 cm2 | C. | 18 cm2 | D. | 12 cm2 |
分析 先根据?ABCD中,AE:EB=1:2得出AE:CD=1:3,再根据相似三角形的判定定理得出△AEF∽△CDF,由相似三角形的性质即可得出结论.
解答 解:∵?ABCD中,AE:EB=1:2,
∴AE:CD=1:3,
∵AB∥CD,
∴∠EAF=∠DCF,∠DFC=∠AFE,
∴△AEF∽△CDF,
∵S△AEF=6cm2,
∴$\frac{{S}_{△AEF}}{{S}_{△CDF}}=(\frac{1}{3})^{2}=\frac{6}{{S}_{△CDF}}$,解得S△CDF=54cm2.
故选A.
点评 本题考查的是相似三角形的判定与性质,熟知相似三角形面积的比等于相似比的平方是解答此题的关键.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -1 | B. | 4 | C. | 9 | D. | 14 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com