分析 根据所给的角的范围和角的函数值,利用同角的三角函数之间的关系,写出角的函数值,用两角差的余弦公式求出结果.
解答 解:∵$sinα=\frac{2}{3}$,$cosβ=-\frac{1}{4}$,α与β为同一象限角,
∴α与β为同为第二象限角,
∴cosα=-$\frac{\sqrt{5}}{3}$,sinβ=$\frac{\sqrt{15}}{4}$,
∴cos(α-β)=cosαcosβ+sinαsinβ=-$\frac{\sqrt{5}}{3}$×(-$\frac{1}{4}$)+$\frac{2}{3}$×$\frac{\sqrt{15}}{4}$=$\frac{\sqrt{5}+2\sqrt{15}}{12}$,
故答案为:$\frac{\sqrt{5}+2\sqrt{15}}{12}$.
点评 本题考查两角差的余弦公式,在解题过程中关键是根据所给的角的范围求出要用的函数值,本题是一个角的变换问题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $x=kπ+{(-1)}^{k}•\frac{π}{6}$,k∈Z | B. | $x=2kπ{({-1})^k}•\frac{π}{6}$,k∈Z* | ||
| C. | $x=kπ+{({-1})^{k+1}}•\frac{π}{6}$,k∈Z | D. | $x=2kπ+{({-1})^{k+1}}•\frac{π}{6}$,k∈Z |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $y={x^{\frac{1}{2}}}$ | B. | y=x3 | C. | $y={({\frac{1}{2}})^x}$ | D. | y=|x-1| |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com