精英家教网 > 高中数学 > 题目详情
已知函数(a为常数,且a∈N*),对于定义域内的任意两个实数x1、x2,恒有|f(x1)-f(x2)|<1成立,则正整数a可以取的值有( )
A.4个
B.5个
C.6个
D.7个
【答案】分析:由条件对定义域内任意x1,x2,满足|f(x1)-f(x2)|<1,问题可以转化为f(x)max-f(x)min<1,因此求函数的最值是关键.求最值时,利用换元法求解.
解答:解:由题意,
从而有 ,∴解得 ,∵a∈N*,∴a=1,2,3,4,5,
故选B.
点评:解答时等价转化是解题的关键,求解函数的最值运用三角换元法,应注意参数角的范围.
练习册系列答案
相关习题

科目:高中数学 来源:2012年宁夏高考数学仿真模拟试卷3(文科)(解析版) 题型:解答题

已知函数( a为常数、a∈R),
(1)讨论函数f(x)的单调性;
(2)当a=1时,判断函数g(x)的零点的个数,并说明理由.

查看答案和解析>>

科目:高中数学 来源:2010年上海市普陀区曹杨二中高考数学模拟试卷(文科)(解析版) 题型:解答题

已知函数(a为常数)的图象经过点(1,3).
(1)求实数a的值;
(2)写出函数f(x)在[a,a+1]上的单调区间,并求函数f(x)在[a,a+1]上的值域.

查看答案和解析>>

科目:高中数学 来源:2009-2010学年安徽省皖中地区示范高中高三联考数学试卷(文科)(解析版) 题型:解答题

已知函数( a为常数、a∈R),
(1)讨论函数f(x)的单调性;
(2)当a=1时,判断函数g(x)的零点的个数,并说明理由.

查看答案和解析>>

科目:高中数学 来源:2010年青海省高一上学期期中考试数学试卷 题型:解答题

已知函数(a为常数)是R上的奇函数,函数

是区间[-1,1]上的减函数.

(1)求a的值;

(2)若上恒成立,求t的取值范围

 

查看答案和解析>>

科目:高中数学 来源:2010年贵州省遵义市高三考前最后一次模拟测试数学(理)试题 题型:解答题

(本小题满分12分)

已知函数其中a为常数,且

(Ⅰ)当时,求(e=2.718 28…)上的值域;

(Ⅱ)若对任意恒成立,求实数a的取值范围.

 

查看答案和解析>>

同步练习册答案