精英家教网 > 高中数学 > 题目详情
y=ax(a>0,a≠1)是减函数,则函数f(x)=loga(x2+2x-3)的增区间是
 
考点:复合函数的单调性
专题:函数的性质及应用
分析:由题意可得0<a<1,令t=x2+2x-3>0,求得f(x)的定义域为{x|x<-3,x>1},函数f(x)=logat,本题即求函数t在{x|x<-3,x>1}上的减区间.
再利用二次函数的性质可得结论.
解答: 解:由y=ax(a>0,a≠1)是减函数,可得0<a<1,令t=x2+2x-3>0,求得f(x)的定义域为{x|x<-3,x>1},
且函数f(x)=logat,
故本题即求函数t在{x|x<-3,x>1}上的减区间.
再利用二次函数的性质可得函数t在{x|x<-3,x>1}上的减区间为(-∞,-3),
故答案为:(-∞,-3).
点评:本题主要考查复合函数的单调性,对数函数、二次函数的性质,体现了转化的数学思想,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图所示,已知直线l的解析式是y=
4
3
x-4,并且与x轴、y轴分别交于A、B两点,一个半径为1.5的⊙C,圆心C从点(0,1.5)开始以每秒0.5个单位的速度沿着y轴向下运动,当⊙C与直线l相切时,求该圆运动的时间.

查看答案和解析>>

科目:高中数学 来源: 题型:

设x、y为实数,集合A={(x,y)|y2-x-1=0},B={(x,y)|16x2+8x-2y+5=0},C={(x,y)|y=kx+b},问是否存在自然数k,b使(A∪B)∩C=∅?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
2x-1,(x≤0)
f(x-2)+1,(x>0)
,把函数g(x)=f(x)-
1
2
x的偶数零点按从小到大的顺序排列成一个数列,该数列的前n项的和Sn,则S10=(  )
A、45B、55C、90D、110

查看答案和解析>>

科目:高中数学 来源: 题型:

a3-2a2-a+7=5,则a的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在直三棱柱ABC-A1B1C1中,AC=AB=AA1=4,∠BAC=90°,点D是棱B1C1的中点.
(Ⅰ)求证:A1D⊥BC1
(Ⅱ)求三棱锥A-CDB1的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

设正数数列{an}的前n项和Sn满足Sn=
1
4
(an+1)2
(1)求证:an=2n-1;
(2)设bn=
1
anan+1
,记数列{bn}的前n项和为Tn,求Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,已知向量
a
=(sinA,1),
b
=(cosA,
3
),且
a
b
,其中A∈(0,
π
2
)

(1)若sin(ω-A)=
3
5
,0<ω<
π
2
,求cosω的值;
(2)若BC=2
3
,AC+AB=4,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

阅读如图的程序框图,若输入的n是100,则输出的变量S的值是(  ) 
A、5 049
B、5 050
C、5 051
D、5 052

查看答案和解析>>

同步练习册答案