精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
3
sinωxcosωx-cos2ωx(ω>0)
的最小正周期为
π
2

(1)求ω的值
(2)写出函数f(x)图象的对称轴
(3)设△ABC的三边a,b,c满足b2=ac,且边b所对角为x,求函数f(x)的值域.
(1)f(x)=
3
sinωxcosωx-cos2ωx=
3
2
sin2ωx-
1
2
(1+cos2ωx)

=
3
2
sin2ωx-
1
2
cos2ωx-
1
2
=sin(2ωx-
π
6
)-
1
2
…(3分)
由已知,
=
π
2
∴ω=2
…(1分)
(2)写出函数f(x)图象的对称轴    f(x)=sin(4x-
π
6
)-
1
2

4x-
π
6
=kπ+
π
2
得:x=
4
+
π
6
 (k∈Z)
…(2分)
(3)设△ABC的三边a,b,c满足b2=ac,且边b所对角为x,
cosx=
a2+c2-b2
2ac
=
a2+c2-ac
2ac
2ac-ac
2ac
=
1
2

cosx∈[
1
2
,1)
…(3分)
x∈(0,
π
3
]
…(1分)
4x-
π
6
∈(0,
6
]
f(x)=sin(4x-
π
6
)-
1
2
∈[-1,
1
2
]
…(2分)
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
(3-a)x-3 (x≤7)
ax-6??? (x>7)
,数列an满足an=f(n)(n∈N*),且an是递增数列,则实数a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
3-ax
,若f(x)在区间(0,1]上是减函数,则实数a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=3-2sin2ωx-2cos(ωx+
π
2
)cosωx(0<ω≤2)
的图象过点(
π
16
,2+
2
)

(Ⅰ)求ω的值及使f(x)取得最小值的x的集合;
(Ⅱ)该函数的图象可由函数y=
2
sin4x(x∈R)
的图象经过怎样的变换得出?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=|3-
1x
|,x∈(0,+∞)

(1)写出f(x)的单调区间;
(2)是否存在实数a,b(0<a<b)使函数y=f(x)定义域值域均为[a,b],若存在,求出a,b的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x-
π
3
)=sinx,则f(π)
等于(  )

查看答案和解析>>

同步练习册答案