精英家教网 > 高中数学 > 题目详情
8.实数x,y满足条件$\left\{\begin{array}{l}{x+2y≤4}\\{x+y≥1}\\{y≥0}\end{array}\right.$,则3x+5y的最大值为(  )
A.12B.9C.8D.3

分析 作出不等式对应的平面区域,利用线性规划的知识,通过平移即可求z的最大值.

解答 解:作出不等式对应的平面区域(阴影部分),
设z=3x+5y,得y=$-\frac{3}{5}x+\frac{z}{5}$,
平移直线y=$-\frac{3}{5}x+\frac{z}{5}$,由图象可知当直线y=$-\frac{3}{5}x+\frac{z}{5}$,经过点C(4,0)时,直线y=$-\frac{3}{5}x+\frac{z}{5}$的截距最大,此时z最大.
此时z的最大值为z=3×4-0=12,
故选:A.

点评 本题主要考查线性规划的应用,利用数形结合是解决线性规划题目的常用方法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.已知函数y=sin(ωx-2)(ω>0)的最小正周期为$\frac{2π}{3}$,要得到y=sin(ωx-2)的图象,只要将函数y=sinωx的图象(  )
A.向左平移2个单位B.向右平移2个单位
C.向左平移$\frac{2}{3}$个单位D.向右平移$\frac{2}{3}$个单位

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.圆C1:x2+y2+2ax+a2-4=0(a≥0)与圆C2:x2+y2-2by+b2-1=0(b≥0)外切,则$\frac{b}{a+6}$最大值为$\frac{1}{2}$..

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.下列函数中,满足“f(xy)=f(x)+f(y)”的单调递增函数是(  )
A.f(x)=log${\;}_{\frac{1}{2}}$xB.f(x)=x3C.f(x)=2xD.f(x)=log2x

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1的左、右焦点分别为F1,F2,右焦点F2与抛物线y2=4$\sqrt{34}$x的焦点相同,离心率为e=$\frac{\sqrt{34}}{5}$,若双曲线左支上有一点M到右焦点F2距离为18,N为MF2的中点,O为坐标原点,则|NO|等于(  )
A.$\frac{2}{3}$B.1C.2D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.若规定E={a1,a2,…,a10}的子集{at1,at2,…,ak}为E的第k个子集,其中$k={2^{{t_1}-1}}+{2^{{t_2}-1}}+…+{2^{{t_m}-1}}$,则E的第211个子集是{a1,a2,a5,a7,a8}.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知定义在区间$[{-\frac{π}{4},\frac{π}{4}}]$上的函数f(x)=2asin2x+b的最大值为1,最小值为-5,则实数a+b的值为-$\frac{1}{2}$或-$\frac{7}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=lnx-ax2-bx(a,b∈R),g(x)=$\frac{2x-2}{x+1}$-lnx.
(1)当a=-1时,f(x)与g(x)在定义域上的单调性相反,求b的取值范围;
(2)当a,b都为0时,斜率为k的直线与曲线y=f(x)交A(x1,y1),B(x2,y2)(x1<x2)于两点,求证:x1<$\frac{1}{k}<{x_2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.函数f(x)=-4x3+kx,对任意的x∈[-1,1],总有f(x)≤1,则实数k的取值为3.

查看答案和解析>>

同步练习册答案