精英家教网 > 高中数学 > 题目详情
设函数
(Ⅰ)求函数的单调区间;
(Ⅱ)已知对任意成立,求实数的取值范围。
(Ⅰ)见解析(Ⅱ)
本试题主要是考查了导数在研究函数中的运用,以及导数求解最值的综合运用,解不等式。
(1)根据已知解析式先求解导数,然后令导数大于零或者小于零得到单调区间。
(2)根据不等式两边取对数,既可以得到不等式关系式,利用由(1)的结果可知函数的最大值,从而得到结论。
解(Ⅰ)   则  列表如下

(Ⅱ) 在  两边取对数, 得 ,由于  
所以         (1)
由(1)的结果可知,当时, ,
为使(1)式对所有成立,当且仅当,即
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)
已知函数,(e为自然对数的底数)
(Ⅰ)当a=1时,求函数f(x)的单调区间;
(Ⅱ)若函数f(x)在上无零点,求a的最小值;
(III)若对任意给定的,在上总存在两个不同的,使得成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设函数
(I)证明:是函数在区间上递增的充分而不必要的条件;
(II)若时,满足恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

函数的单调递减区间是
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

对于三次函数,定义的导函数的导函数,若方程有实数解,则称点为函数的“拐点”,可以证明,任何三次函数都有“拐点”,任何三次函数都有对称中心,且“拐点”就是对称中心,请你根据这一结论判断下列命题:
①任意三次函数都关于点对称:
②存在三次函数有实数解,点为函数的对称中心;
③存在三次函数有两个及两个以上的对称中心;
④若函数,则,
其中正确命题的序号为__          _____(把所有正确命题的序号都填上).

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分) 已知R,函数(x∈R).
(1)当时,求函数f(x)的单调递增区间;
(2)函数f(x)是否能在R上单调递减,若能,求出的取值范围;若不能,请说明理由;
(3)若函数f(x)在上单调递增,求的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题9分)
求函数的单调递减区间.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

以下四图,都是同一坐标系中三次函数及其导函数的图像,其中一定不正确的序号是 (  )
A.①、②B.①、③C.③、④D.①、④

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(12分)已知函数f(x)=lnx-(a≠0)
(1)若a=3,b=-2,求f(x)在[,e]的最大值;
(2)若b=2,f(x)存在单调递减区间,求a的范围.

查看答案和解析>>

同步练习册答案