| A. | 若AE:BE=CF:BF,则AC∥平面EFGH | |
| B. | 若E,F,G,H分别为各边中点,则四边形EFGH为平行四边形 | |
| C. | 若E,F,G,H分别为各边中点且AC=BD,则四边形EFGH为矩形 | |
| D. | 若E,F,G,H分别为各边中点且AC⊥BD,则四边形EFGH为矩形 |
分析 作出如图的空间四边形,连接AC,BD可得一个三棱锥,将四个中点连接,得到一个四边形,可证明其是一个菱形.
解答
解:作出如图的空间四边形,
连接AC,BD可得一个三棱锥,
将四个中点连接,得到一个四边形EFGH,
由中位线的性质知,
EH∥FG,EF∥HG
故四边形EFGH是平行四边形,
又AC=BD,
故有HG=$\frac{1}{2}$AC=$\frac{1}{2}$BD=EH,
故四边形EFGH是菱形.
故选:C.
点评 本题考查空间中直线与干线之间的位置关系,解题的关键是掌握空间中直线与直线之间位置关系的判断方法,本题涉及到线线平行的证明,中位线的性质等要注意这些知识在应用时的转化方式.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 3y<3x | B. | logx3<logy3 | C. | log2x>log2y | D. | ${({\frac{1}{2}})^x}>{({\frac{1}{2}})^y}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com