精英家教网 > 高中数学 > 题目详情
3.如图,在空间四边形ABCD(A,B,C,D不共面)中,一个平面与边AB,BC,CD,DA分别交于E,F,G,H(不含端点),则下列结论错误的是(  )
A.若AE:BE=CF:BF,则AC∥平面EFGH
B.若E,F,G,H分别为各边中点,则四边形EFGH为平行四边形
C.若E,F,G,H分别为各边中点且AC=BD,则四边形EFGH为矩形
D.若E,F,G,H分别为各边中点且AC⊥BD,则四边形EFGH为矩形

分析 作出如图的空间四边形,连接AC,BD可得一个三棱锥,将四个中点连接,得到一个四边形,可证明其是一个菱形.

解答 解:作出如图的空间四边形,
连接AC,BD可得一个三棱锥,
将四个中点连接,得到一个四边形EFGH,
由中位线的性质知,
EH∥FG,EF∥HG
故四边形EFGH是平行四边形,
又AC=BD,
故有HG=$\frac{1}{2}$AC=$\frac{1}{2}$BD=EH,
故四边形EFGH是菱形.
故选:C.

点评 本题考查空间中直线与干线之间的位置关系,解题的关键是掌握空间中直线与直线之间位置关系的判断方法,本题涉及到线线平行的证明,中位线的性质等要注意这些知识在应用时的转化方式.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.设f(x)=lnx-a$\frac{2(x-1)}{1+{x}^{2}}(a≠0)$
(1)若a=1时,证明x∈[1,+∞)时,f(x)恒为增函数;
(2)若0<x1<x2时,证明:lnx2-lnx1>$\frac{2{x}_{1}({x}_{2}-{x}_{1})}{{{x}_{1}}^{2}+{{x}_{2}}^{2}}$;
(3)证明:ln(n+1)>$\frac{1}{{2}^{2}}+\frac{2}{{3}^{2}}+\frac{3}{{4}^{2}}+…+\frac{n}{(n+1)^{2}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知正数x,y满足x+8y=xy,则x+2y的最小值为18.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.方程|x2-2x|=m有两个不相等的实数根,则m的取值范围是(  )
A.0<m<1B.m≥1C.m≤-1或m=0D.m>1或m=0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.一几何体的三视图如下,求这个几何体的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知定义在R上的单调函数f(x)满足对任意的x1,x2,都有f(x1+x2)=f(x1)+f(x2)成立.若正实数a,b满足f(a)+f(2b-1)=0,则$\frac{1}{a}+\frac{2}{b}$的最小值为9.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.复数z满足$z=\frac{2-i}{1-i}$,则z对应的点位于复平面的(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知f(x)是定义在[-1,1]上的奇函数,且f(1)=1,若对任意m,n∈[-1,1],m+n≠0,都有$\frac{f(m)+f(n)}{m+n}>0$.
(1)用定义证明函数f(x)在定义域上是增函数;
(2)若$f({a+\frac{1}{2}})<f({3a})$,求实数a的取值范围;
(3)若不等式f(x)≤(1-2a)t+2对所有和x∈[-1,1],a∈[-1,1]都恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.若0<x<y<1,则(  )
A.3y<3xB.logx3<logy3C.log2x>log2yD.${({\frac{1}{2}})^x}>{({\frac{1}{2}})^y}$

查看答案和解析>>

同步练习册答案