精英家教网 > 高中数学 > 题目详情
椭圆的对称中心在坐标原点,一个顶点为,右焦点F与点 的距离为2。
(1)求椭圆的方程;
(2)是否存在斜率 的直线使直线与椭圆相交于不同的两点M,N满足,若存在,求直线l的方程;若不存在,说明理由。
(1) (2) 存在;

试题分析:(1) 依题意,设椭圆方程为,然后解关于a、b、c的方程组即可.
(2) 由知点在线段的垂直平分线上,由消去 
转化为方程有两个不相等的实数根,再利用根与系数的关系,代入方程求出k即可.        
(1)依题意,设椭圆方程为,则其右焦点坐标为 ,由,得,即,解得。 又 ∵ ,∴,即椭圆方程为。      (4分)
(2)方法一:由知点在线段的垂直平分线上,由消去 (*)          ( 5分)
,得方程(*)的,即方程(*)有两个不相等的实数根。    (6分)
,线段MN的中点,则
 ,即 
,∴直线的斜率为,        (9分)
,得,∴,解得:,  (11分)
∴l的方程为。         ( 12分)
方法二:直线l恒过点(0,-2), 且点(0,-2)在椭圆上, ∴不妨设M(0,-2), 则|AM|=4    (6分)
∴|AN|="4," 故N在以A为圆心, 4为半径的圆上,即在的图像上.
联立 化简得 ,解得           (8分)
当y=-2时,N和M重合,舍去.当y=0时,, 因此      (11分)
∴l的方程为。      ( 12分)
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知圆经过椭圆的右焦点和上顶点
(1)求椭圆的方程;
(2)过原点的射线与椭圆在第一象限的交点为,与圆的交点为的中点,求的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若抛物线y2=4x的准线也是双曲线
x2
a2
-
4y2
3
=1
的一条准线,则该双曲线的渐近线方程为(  )
A.y=±2xB.y=±
2
2
x
C.y=±
3
x
D.y=±
2
x

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,河道上有一座抛物线型拱桥,在正常水位时,拱圈最高点距水面为8m,拱圈内水面宽16m.,为保证安全,要求通过的船顶部(设为平顶)与拱桥顶部在竖直方向上高度之差至少要有0.5m.
(1)一条船船顶部宽4m,要使这艘船安全通过,则船在水面以上部分高不能超过多少米?
(2)近日因受台风影响水位暴涨2.7m,为此必须加重船载,降低船身,才能通过桥洞.试问:一艘顶部宽4
2
m,在水面以上部分高为4m的船船身应至少降低多少米才能安全通过?

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若抛物线y2=x上两点A(x1,y1)、B(x2,y2)关于直线y=x+b对称,且y1y2=-1,则实数b的值为(  )
A.-3B.3C.2D.-2

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知双曲线)的焦距为,右顶点为,抛物线的焦点为,若双曲线截抛物线的准线所得线段长为,且,则双曲线的渐近线方程为___________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知抛物线C:的焦点为F,准线为,P是上一点,Q是直线PF与C得一个焦点,若,则(     )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知P是圆上任意一点,点N的坐标为(2,0),线段NP的垂直平分线交直线MP于点Q,当点P在圆M上运动时,点Q的轨迹为C.
(1)求出轨迹C的方程,并讨论曲线C的形状;
(2)当时,在x轴上是否存在一定点E,使得对曲线C的任意一条过E的弦AB,为定值?若存在,求出定点和定值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(2013•浙江)已知抛物线C的顶点为O(0,0),焦点F(0,1)
(Ⅰ)求抛物线C的方程;
(Ⅱ)过F作直线交抛物线于A、B两点.若直线OA、OB分别交直线l:y=x﹣2于M、N两点,求|MN|的最小值.

查看答案和解析>>

同步练习册答案