精英家教网 > 高中数学 > 题目详情

已知数列{an}的前n项和为Sn,满足an+1=an-an-1(n≥2),a1=1,a2=2,则S2012=________.

3
分析:根据数列递推式,确定数列{an}是以6为周期的周期数列,且6项的和为0,由此可得结论.
解答:∵an+1=an-an-1(n≥2),a1=1,a2=2,
∴a3=1,a4=-1,a5=-2,a6=-1,a7=1,a8=2,…
即数列{an}是以6为周期的周期数列,且6项的和为0
∵2012=6×335+2
∴S2012=a1+a2=3
故答案为:3
点评:本题考查数列递推式,考查数列的周期性,考查学生的计算能力,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

19、已知数列{an}的前n项和Sn=n2(n∈N*),数列{bn}为等比数列,且满足b1=a1,2b3=b4
(1)求数列{an},{bn}的通项公式;
(2)求数列{anbn}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和Sn=an2+bn(a、b∈R),且S25=100,则a12+a14等于(  )
A、16B、8C、4D、不确定

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和Sn=n2+n+1,那么它的通项公式为an=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

13、已知数列{an}的前n项和为Sn=3n+a,若{an}为等比数列,则实数a的值为
-1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和Sn满足Sn+1=kSn+2,又a1=2,a2=1.
(1)求k的值及通项公式an
(2)求Sn

查看答案和解析>>

同步练习册答案