精英家教网 > 高中数学 > 题目详情

已知函数f(x)=Asin,x∈R,A>0,0<φ<,y=f(x)的部分图象如图所示,P、Q分别为该图象的最高点和最低点,点P的坐标为(1,A).

(1)求f(x)的最小正周期及φ的值;
(2)若点R的坐标为(1,0),∠PRQ=,求A的值.

(1)(2)

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知:P(-2,y)是角θ终边上一点,且sinθ= -,求cosθ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知,函数.
(1)设,将函数表示为关于的函数,求的解析式和定义域;
(2)对任意,不等式都成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=(2cos2x-1)sin2x+cos4x.
(1)求f(x)的最小正周期及最大值;
(2)若α∈(,π),且f(α)=,求α的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知a=(cosx+sinx,sinx),b=(cosx-sinx,2cosx),设f(x)=a·b.
(1)求函数f(x)的最小正周期;
(2)当x∈时,求函数f(x)的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数f(x)=(sinωx+cosωx)2+2cos2ωx(ω>0)的最小正周期为.
(1)求ω的最小正周期;
(2)若函数y=g(x)的图象是由y=f(x)的图象向右平移个单位长度得到,求y=g(x)的单调增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数f(x)=2cos2x+2sinxcosx-1(x∈R).
(1)化简函数f(x)的表达式,并求函数f(x)的最小正周期.
(2)若x∈[0,],求函数f(x)的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知α、β均为锐角,且sinα=,tan(α-β)=-.
(1) 求sin(α-β)的值;
(2) 求cosβ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知cos(π+α)=-,且角α在第四象限,计算:
(1)sin(2π-α);
(2)(n∈Z).

查看答案和解析>>

同步练习册答案