精英家教网 > 高中数学 > 题目详情

已知:P(-2,y)是角θ终边上一点,且sinθ= -,求cosθ的值.

解析试题分析:因为,横坐标为负数,所以余弦值是负数,根据同角基本关系式:,所以.
试题解析:∵sinθ= -,∴角θ终边与单位圆的交点(cosθ,sinθ)=(,-
又∵P(-2, y)是角θ终边上一点, ∴cosθ<0,∴cosθ= -.
考点:1.三角函数的定义;2.同角基本关系式.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数,.
(1)求函数的最小正周期;
(2)若函数有零点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,已知是半径为,圆心角为的扇形,是扇形弧上的动点,是扇形的内接矩形.记,求当角取何值时,矩形的面积最大?并求出这个最大面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知向量,函数.
⑴设,x为某三角形的内角,求时x的值;
⑵设,当函数取最大值时,求cos2x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知f(x)=sinxcosx(x∈R).
(1)求函数f(x)的最小正周期;
(2)求函数f(x)的最大值,并指出此时x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数其中向量.
(1)求的最小值,并求使取得最小值的的集合;
(2)将函数的图象沿轴向右平移,则至少平移多少个单位长度,才能使得到的函数的图象关于轴对称?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,的最大值为2.
(1)求函数上的值域;
(2)已知外接圆半径,角所对的边分别是,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)求的最小正周期和单调递增区间;
(2)已知三边长,且,的面积.求角的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=Asin,x∈R,A>0,0<φ<,y=f(x)的部分图象如图所示,P、Q分别为该图象的最高点和最低点,点P的坐标为(1,A).

(1)求f(x)的最小正周期及φ的值;
(2)若点R的坐标为(1,0),∠PRQ=,求A的值.

查看答案和解析>>

同步练习册答案