精英家教网 > 高中数学 > 题目详情

如图,已知是半径为,圆心角为的扇形,是扇形弧上的动点,是扇形的内接矩形.记,求当角取何值时,矩形的面积最大?并求出这个最大面积.

时,矩形ABCD的面积最大,最大面积为

解析试题分析:如图先用所给的角将矩形的长和宽表示出来,再写出面积,建立三角函数模型,再根据所建立的模型利用三角函数的性质,进行化简,求最值.
试题解析:解:在中,,      (2分)
中,
所以.   (4分)
所以.              (5分)
设矩形ABCD的面积为S,则
       (7分)
 .                     (11分)
,                   (12分)
所以当,即时,.    (13分)
因此,当时,矩形ABCD的面积最大,最大面积为.         (14分)
考点:三角函数的实际应用

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

电流强度I与时间t的关系式 。(1)在一个周期内如图所示,试根据图象写出的解析式;(2)为了使中t在任意一段秒的时内I能同时取最大值|A|和最小值-|A|,那么正整数的最小值为多少?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数 的部分图象,如图所示.

(1)求函数解析式;
(2)若方程有两个不同的实根,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数的图象过点.
(1)求实数的值; 
(2)求函数的最小正周期及最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数)的最小正周期为
(1)求函数的单调增区间;
(2)将函数的图像向左平移个单位,再向上平移个单位,得到函数的图像.求在区间上零点的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知=,那么sin的值为 ,cos2的值为

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知:P(-2,y)是角θ终边上一点,且sinθ= -,求cosθ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知,函数.
(1)设,将函数表示为关于的函数,求的解析式和定义域;
(2)对任意,不等式都成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=(2cos2x-1)sin2x+cos4x
(1)求f(x)的最小正周期及最大值。
(2)设A,B,C为△ABC的三个内角,若cosB=,f()=-,且角A为钝角,求sinC

查看答案和解析>>

同步练习册答案