已知函数()的最小正周期为.
(1)求函数的单调增区间;
(2)将函数的图像向左平移个单位,再向上平移个单位,得到函数的图像.求在区间上零点的个数.
(1)函数的单调增区间;(2)在上有个零点.
解析试题分析:(1)先由三角函数的周期计算公式得到,从而可确定,将当成一个整体,由正弦函数的性质得到,解出的范围,写成区间即是所求函数的单调递增区间;(2)将函数的图像向左平移个单位,再向上平移1个单位,得到的图像,即,由正弦函数的图像与性质得到该函数在一个周期内函数零点的个数,而恰为个周期,从而可得在上零点的个数.
试题解析:(1)由周期为,得,得
由正弦函数的单调增区间得
,得
所以函数的单调增区间
(2)将函数的图像向左平移个单位,再向上平移1个单位
得到的图像,所以
令,得或
所以函数在每个周期上恰有两个零点,恰为个周期,故在上有个零点.
考点:1.三角函数的图像与性质;2.函数的零点.
科目:高中数学 来源: 题型:解答题
设向量,定义一种向量积.
已知向量,,点为的图象上的动点,点
为的图象上的动点,且满足(其中为坐标原点).
(1)请用表示;
(2)求的表达式并求它的周期;
(3)把函数图象上各点的横坐标缩小为原来的倍(纵坐标不变),得到函数的图象.设函数,试讨论函数在区间内的零点个数.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
设函数其中向量,.
(1)求的最小值,并求使取得最小值的的集合;
(2)将函数的图象沿轴向右平移,则至少平移多少个单位长度,才能使得到的函数的图象关于轴对称?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com