精英家教网 > 高中数学 > 题目详情

【题目】如图,在直三棱柱ABC﹣A1B1C1中,D为AC的中点,∠ABC=90°,AA1=AB=2,BC=3.

(1)求证:AB1∥平面BC1D;
(2)求三棱锥D﹣BC1C的体积.

【答案】
(1)证明:设B1C与BC1相交于点O,连接OD.

∵四边形BCC1B1是平行四边形

∴点O为B1C的中点,又D为AC的中点

∴OD∥AB1

∵OD平面BC1D,AB1平面BC1D

∴AB1∥平面BC1D


(2)解:在直三棱柱ABCA1B1C1中,侧棱CC1⊥平面ABC

故CC1为三棱锥C1﹣BCD的高,CC1=A1A=2.

∵D为AC的中点,∠ABC=90°

∴SBCD= SABC= ×( BC×AB)=

∴VDBC1C=VC1BCD= SBCDCC1= × ×2=1.


【解析】(1)设B1C与BC1相交于点O,连接OD,则由中位线定理可知OD∥AB1 , 故而AB1∥平面BC1D;(2)把△BCD看做棱锥的底面,则棱锥的高为CC1 , 代入体积公式计算即可.
【考点精析】根据题目的已知条件,利用直线与平面平行的判定的相关知识可以得到问题的答案,需要掌握平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行;简记为:线线平行,则线面平行.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知圆x2+y2+x﹣6y+m=0与直线x+2y﹣3=0相交于P,Q两点,O为原点,且OP⊥OQ,求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某农科所对冬季昼夜温差大小与某反季节大豆新品种发芽多少之间的关系进行分析研究,他们分别记录了121日至125日的每天昼夜温差与实验室每天每100颗种子中的发芽数,得到如下资料:

日 期

121

122

123

124

125

温差°C

10

11

13

12

8

发芽数(颗)

23

25

30

26

16

该农科所确定的研究方案是:先从这五组数据中选取2组,用剩下的3组数据求线性回归方程,再对被选取的2组数据进行检验.

1)求选取的2组数据恰好是不相邻2天数据的概率;

2)若选取的是121日与125日的两组数据,请根据122日至124日的数据,求出y关于x的线性回归方程

3)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2颗,则认为得到的线性回归方程是可靠的,试问(2)中所得的线性回归方程是否可靠?

(注:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,半径为R的半圆内的阴影部分以直径AB所在直线为轴,旋转一周得到一几何体,求该几何体的表面积(其中∠BAC=30°)及其体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,记长方体ABCD﹣A1B1C1D1被平行于棱B1C1的平面EFGH截去右上部分后剩下的几何体为Ω,则下列结论中不正确的是(

A.EH∥FG
B.四边形EFGH是平行四边形
C.Ω是棱柱
D.Ω是棱台

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图为一简单组合体,其底面ABCD为正方形,棱PD与EC均垂直于底面ABCD,PD=2EC,N为PB的中点,求证:

(1)平面EBC∥平面PDA;
(2)NE⊥平面PDB.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在四棱锥P﹣ABCD中,侧面PCD⊥底面ABCD,PD⊥CD,E为PC中点,底面ABCD是直角梯形.AB∥CD,∠ADC=90°,AB=AD=PD=1,CD=2.
(Ⅰ)求证:BE∥平面APD;
(Ⅱ)求证:BC⊥平面PBD.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在梯形ABCD中,BC∥AD,AB⊥BC,AB=BC=1,PA=AD=2,PA⊥平面ABCD,E为PD中点.
(1)求证:CE∥平面PAB;
(2)求直线CE与平面PAD所成角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱柱ABC﹣A1B1C1中,侧棱垂直于底面,AB⊥BC,AA1=AC=2,BC=1,E,F分别是A1C1 , BC的中点.
(1)求证:AB⊥C1F;
(2)求证:C1F∥平面ABE;
(3)求三棱锥E﹣ABC的体积.

查看答案和解析>>

同步练习册答案