精英家教网 > 高中数学 > 题目详情
已知函数f(x)=(1-x)ex-1.
(Ⅰ)求函数f(x)的最大值;
(Ⅱ)若x≥0时,g(x)=ex+λ1n(1-x)-1≤0,求λ的取值范围;
(Ⅲ)证明:
1
en+1
+
1
en+2
+
1
en+3
+…+
1
e2n
<n+ln2(n∈N*).
考点:利用导数研究函数的单调性,利用导数求闭区间上函数的最值
专题:导数的综合应用
分析:(Ⅰ)中求出函数的导数,讨论x的范围,找出单调区间求出最值;(Ⅱ)求出函数g(x)的导数,通过讨论g(x)的增减性得出λ的取值范围;(Ⅲ)将x的不同的值代入求出即可.
解答: 解;(Ⅰ)f′(x)=-xex
x=0时,f′(x)=0,
x<0时,f′(x)>0,
x>0时,f′(x)<0;
∴f(x)在(-∞,0)单调递增,在(0,+∞)单调递减;
∴f(x)max=f(0)=0.
(Ⅱ)g′(x)=ex-
λ
1-x
=
(1-x)ex
1-x

令h(x)=(1-x)ex-λ,
∴h′(x)=-xex
x∈[0,1)时,h′(x)≤0,h(x)单调递减,
若在[0,1)内存在使h(x)=(1-x)ex-λ>0的区间(0,x0),
则g(x)在(0,x0)上是增函数,g(x)>g(0)=0,与已知不符;
故x∈[0,1)时,h(x)≤0,g(x)在[0,1)上是减函数,g(x)≤g(0)=0成立.
∴h(x)的最大值h(0)≤0,即(1-0)e0-λ≤0,∴λ≥1,
∴λ的取值范围是[1,+∞).
(Ⅲ):在(Ⅱ)中令λ=1,
∴x>0时,ex<1-ln(1-x),
将x=
1
n+1
1
n+2
,…,
1
2n
代入上述不等式,再将得到的n个不等式相加,
得:
1
en+1
+
1
en+2
+
1
en+3
+…+
1
e2n
<n+ln2.
点评:本题考察了导数的应用,函数的单调性,函数的最值,渗透了分类讨论思想,有一定的难度.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

经统计,用于数学学习的时间(单位:小时)与成绩(单位:分)近似于线性相关关系,对每小组学生每周用于数学的学习时间x与数学成绩y进行数据收集如下:
x1516181922
y10298115115120
由表中样本数据求得回归方程为
y
=bx+a,则点(a,b)与直线x+18y=100的位置关系是(  )
A、点在直线左侧
B、点在直线右侧
C、点在直线上
D、无法确定

查看答案和解析>>

科目:高中数学 来源: 题型:

下列命题中假命题是(  )
A、“存在x∈R,使得x2+x+1<0”的否定是“对任意x∈R,均有x2+x+1≥0”
B、设随机变量ξ~N(0,1).若P(ξ≥2)=p.则P(-2<ξ<0)=
1
2
-p
C、若函数y=lg(mx2-x-1)的值域为R,则m<-
1
4
D、若a>0,b>0,a+b=4.则
1
a
+
2
b
的最小值为
3+2
2
4

查看答案和解析>>

科目:高中数学 来源: 题型:

若△ABC的内角A,B,C所对的边a,b,c满足b2=3ac,且sinB=4cosAsinC,则cosA=(  )
A、
6
4
B、
3
4
C、
2
4
D、
1
4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2sin(ωx),其中常数(ω>0);
(Ⅰ)若y=f(x)图象与y=2图象交点的最小距离为
π
3
,求ω的值;
(Ⅱ)若ω=4,将y=f(x)图象向右平移
π
12
,向上平移1个单位得到y=g(x)图象,求g(x)在区间(0,
12
)上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=|2x-1|,x∈R.
(1)若不等式f(x)≤a的解集为{x|0≤x≤1},求a的值;
(2)若g(x)=
1
f(x)+f(x+1)+m
的定义域为R,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

等比数列{an}中,a1=1,a4=8.
(Ⅰ)求{an}的通项公式;
(Ⅱ)数列{bn}满足a2,a bn,a2n+2成等比数列,若b1+b2+b3+…+bm≤b10,求正整数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

求适合下列条件的双曲线的标准方程;
(1)双曲线经过A(2
7
,3),B(-7,-6
2
).
(2)双曲线2x2-y2=k的焦距是6,求k.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线 C:y2=2px(p>0)上一点P(2,m)(m>0),若P到焦点F的距离为4,则以P为圆心且与抛物线C的准线相切的圆的标准方程为
 

查看答案和解析>>

同步练习册答案