精英家教网 > 高中数学 > 题目详情
若△ABC的内角A,B,C所对的边a,b,c满足b2=3ac,且sinB=4cosAsinC,则cosA=(  )
A、
6
4
B、
3
4
C、
2
4
D、
1
4
考点:余弦定理,正弦定理
专题:计算题,解三角形
分析:由sinB=4cosAsinC,利用正弦定理化简得:b=4c•cosA,再利用余弦定理,可得2a2=b2+2c2,结合b2=3ac,求出a,b与c 的关系,即可求出cosA的值.
解答: 解:由sinB=4cosAsinC,利用正弦定理化简得:b=4c•cosA,
∴b=4c•
b2+c2-a2
2bc

整理得:2a2=b2+2c2
∵b2=3ac,
∴2a2=3ac+2c2
∴a=2c,
∴b=
6
c,
∴cosA=
b2+c2-a2
2bc
=
6c2+c2-4c2
2
6
c•c
=
6
4
点评:此题考查了正弦、余弦定理,熟练掌握定理是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

定义:x∈R且当m-
1
3
<x≤m+
2
3
(m∈Z)时,φ(x)=m;令函数f(x)=|x-φ(x)|,有以下三个命题:
①f(x)是最小正周期为1的周期函数;
②f(x)的值域为[0,1];
③f(x)在(k,k+
2
3
]
上是增函数(k∈Z),其中真命题的序号是(  )
A、①②B、①③C、②③D、①②③

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an}的前n项和为Sn(n∈N*),且an=2n+λ,若数列{Sn}在{n|n≥5,n∈N+}内为递增数列,则实数λ的取值范围为(  )
A、(-3,+∞)
B、(-10,+∞)
C、[-11,+∞)
D、(-12,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)=cos2x-
1
2
(x∈R),则f(x)是(  )
A、最小正周期为
π
2
的奇函数
B、最小正周期为π的奇函数
C、最小正周期为2π的偶函数
D、最小正周期为π的偶函数

查看答案和解析>>

科目:高中数学 来源: 题型:

已知变量x,y满足
x-2y+4≥0
x≤2
x+y-2≥0
,则x2+y2的取值范围是(  )
A、[
2
13
]
B、[
2
5
]
C、[2,13]
D、[2,5]

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=ax-
b
x
,曲线y=f(x)在点(1,f(1))处的切线方程为y=5x-8
(1)求f(x)的解析式;
(2)若曲线y=f(x)上的任一点P(x0,y0)处的切线与直线x=0及直线y=x分别相交于A、B两点,O为坐标原点,求证:△AOB的面积为定值,并求出此定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=(1-x)ex-1.
(Ⅰ)求函数f(x)的最大值;
(Ⅱ)若x≥0时,g(x)=ex+λ1n(1-x)-1≤0,求λ的取值范围;
(Ⅲ)证明:
1
en+1
+
1
en+2
+
1
en+3
+…+
1
e2n
<n+ln2(n∈N*).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等比数列{an},a1=2,a4=16.
(1)求数列{an}的通项公式;
(2)求数列{nan}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

设a,b,c分别为一个三角形三边的边长,证明a2b(a-b)+b2c(b-c)+c2a(c-a)≥0,并指出等号成立的条件.

查看答案和解析>>

同步练习册答案