精英家教网 > 高中数学 > 题目详情
函数上是增函数,,则的取值范围是(   )
A.B.
C.D.
C

试题分析:∵,∴,又函数上是增函数,∴,∴,∴,即的取值范围是
点评:对于抽象函数不等式的解法往往利用单调性转化为常见不等式的解法
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)
已知函数,其中e是自然数的底数,
(1)当时,解不等式
(2)当时,求正整数k的值,使方程在[k,k+1]上有解;
(3)若在[-1,1]上是单调增函数,求的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(12分)定义在上的函数,当时,.且对任意的
(1)证明:
(2)证明:对任意的,恒有
(3)证明:上的增函数;
(4)若,求的取值范围。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
为实数,且
(1)求方程的解;
(2)若满足,试写出的等量关系(至少写出两个);
(3)在(2)的基础上,证明在这一关系中存在满足.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知上是减函数,则满足的实数的取值范围是(     ).
A.(-∞,1)B.(2,+∞)
C.(-∞,1)∪(2,+∞) D.(1,2)

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

某商场对顾客实行购物优惠活动,规定一次购物付款总额,
①如果不超过200元,则不予优惠,
②如果超过200元,但不超过500元,则按标准价给予9折优惠,
③如果超过500元,则其500元按第②条给予优惠,超过500元的部分给予7折优惠;
某人两次去购物,分别付款168元和423元,假设他只去一次购买上述同样的商品,则应付款是         元.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设函数
(1)若对定义域内任意,都有成立,求实数的值;
(2)若函数在定义域上是单调函数,求的范围;
(3)若,证明对任意正整数,不等式都成立.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

对于定义域为的函数,若存在非零实数,使函数上均有零点,则称为函数的一个“界点”.则下列四个函数中,不存在“界点”的是
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

,则                     ;

查看答案和解析>>

同步练习册答案