精英家教网 > 高中数学 > 题目详情

【题目】求函数y=( x﹣( x+1,x∈[﹣3,2]的单调区间,并求它的值域.

【答案】解:∵y= ﹣( x+1,∴令t= ,∵x∈[﹣3,2],∴t∈[ ,8]∴原函数可化为y=t2﹣t+1=(t﹣ 2+ ,(t∈[ ,8],)∴t= 是对称轴
∵x∈[﹣3,1]时,x增大t= 递减,且t∈[ ,8],y=(t﹣ 2+ 递减
∴[﹣3,1]是函数y=( x﹣( x+1的递减区间,同理,[1,2]是函数的递增区间
∴ymin= ,ymax=57
故原函数递减区间是[﹣3,1],递增区间是[1,2],值域是[ ,57]
【解析】令t= ,将原函数化为二次函数y=t2﹣t+1,再根据复合函数的性质即可
【考点精析】认真审题,首先需要了解复合函数单调性的判断方法(复合函数f[g(x)]的单调性与构成它的函数u=g(x),y=f(u)的单调性密切相关,其规律:“同增异减”).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设α是空间中的一个平面,l,m,n是三条不同的直线,则下列命题中正确的是(
A.若mα,nα,l⊥m,l⊥n,则l⊥α
B.若mα,n⊥α,l⊥n,则l∥m
C.若l∥m,m⊥α,n⊥α,则l∥n
D.若l⊥m,l⊥n,则n∥m

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,水平放置的正四棱柱形玻璃容器Ⅰ和正四棱台形玻璃容器Ⅱ的高均为32cm,容器Ⅰ的底面对角线AC的长为10cm容器Ⅱ的两底面对角线的长分别为14cm62cm.分别在容器Ⅰ和容器Ⅱ中注入水水深均为12cm现有一根玻璃棒l其长度为40cm.(容器厚度、玻璃棒粗细均忽略不计)

(1)将放在容器Ⅰ中的一端置于点A处另一端置于侧棱上,没入水中部分的长度;

(2)将放在容器Ⅱ中的一端置于点E处,另一端置于侧棱上,求没入水中部分的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,O为等腰三角形ABC内一点,⊙O与△ABC的底边BC交于M,N两点,与底边上的高AD交于点G,且与AB,AC分别相切于E,F两点.

(1)证明:EF∥BC;
(2)若AG等于⊙O的半径,且AE=MN=2 ,求四边形EBCF的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】

已知函数

(1)若曲线在点处的切线与直线垂直,求的值;

(2)若存在极小值时,不等式恒成立,求实数的取值范围;

(3)当时,如果存在两个不相等的正数,使得,求证:

请考生在第22、23两题中任选一题作答.注意:只能做所选定的题目.如果多做,则按所做的第一个题目计分.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列幂函数在(﹣∞,0)上为减函数的是 (
A.
B.
C.y=x3
D.y=x2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x2﹣2|x|﹣3a
(1)当a=1时,在所给坐标系中,画出函数f(x)的图象,并求f(x)的单调递增区间
(2)若直线y=1与函数f(x)的图象有4个交点,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合A={x|2x2+ax+2=0,a∈R},B={x|x2+3x+2a=0,a∈R},A∩B={2}且A∪B=I,则(IA)∪(IB)=(
A.{﹣5, }
B.{﹣5, ,2}
C.{﹣5,2}
D.{ ,2}

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的定义域为,有下列5个命题:

①若,则的图象自身关于直线轴对称;

的图象关于直线对称;

③函数的图象关于轴对称;

为奇函数,且图象关于直线对称,则周期为2;

为偶函数, 为奇函数,且,则周期为2.

其中正确命题的序号是____________.

查看答案和解析>>

同步练习册答案