| A. | x2-2x | B. | x2-4x+1 | C. | $\frac{{x}^{2}}{4}-\frac{3}{2}x+\frac{5}{4}$ | D. | $\frac{{x}^{2}}{4}-\frac{3}{2}x$ |
分析 利用换元法,令t=2x+1,则x=$\frac{1}{2}(t-1)$,从而化简可得f(t)=$(\frac{1}{2}t-\frac{1}{2})^{2}-2(\frac{1}{2}t-\frac{1}{2})$,化简即可得到f(x).
解答 解:由题意:函数f(2x+1)=x2-2x;
令t=2x+1,则x=$\frac{1}{2}(t-1)$,那么:f(t)=$(\frac{1}{2}t-\frac{1}{2})^{2}-2(\frac{1}{2}t-\frac{1}{2})$,
化简得:f(t)=$\frac{1}{4}{t}^{2}-\frac{3}{2}t+\frac{5}{4}$
所以:f(x)=$\frac{{x}^{2}}{4}-\frac{3}{2}x+\frac{5}{4}$
故选C
点评 本题考查了函数解析式的求法,利用了换元法,属于基础题.
科目:高中数学 来源: 题型:选择题
| A. | 2x-y+1=0 | B. | x-y-4=0 | C. | x+y-2=0 | D. | x+y-4=0 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-∞,-$\frac{1}{2}$)∪(-$\frac{1}{2}$,2) | B. | (-∞,-$\frac{1}{2}$)∪(-$\frac{1}{2}$,1) | C. | (-∞,1) | D. | (-∞,2) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {2,4} | B. | {0,1,3,5} | C. | {1,3,5,6} | D. | {x∈N*|x≤6} |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com