精英家教网 > 高中数学 > 题目详情
19.定义取整函数[x],它表示x的整数部分,即[x]是不超过x的最大整数.例如[2]=2,[3.1]=3,[-2.6]=-3等.设函数f(x)=$\frac{201{6}^{x}}{1+201{6}^{x}}$,x>0,则函数g(x)=[f(x)-$\frac{1}{2}$]+[f(-x)-$\frac{1}{2}$]的值域为(  )
A.{-1}B.{0}C.{-1,0}D.{-1,1}

分析 令t(x)=$\frac{201{6}^{x}-1}{2(1+201{6}^{x})}$,判断其奇偶性,并求得t(x)=$\frac{1}{2}-\frac{1}{201{6}^{x}+1}$∈($-\frac{1}{2}$,$\frac{1}{2}$),然后分t(x)=0和t(x)≠0求解函数值域.

解答 解:∵f(x)=$\frac{201{6}^{x}}{1+201{6}^{x}}$,∴f(x)-$\frac{1}{2}$=$\frac{201{6}^{x}}{1+201{6}^{x}}$$-\frac{1}{2}$=$\frac{201{6}^{x}-1}{2(1+201{6}^{x})}$,
令t(x)=$\frac{201{6}^{x}-1}{2(1+201{6}^{x})}$,则t(-x)=$\frac{201{6}^{-x}-1}{2(1+201{6}^{-x})}=\frac{1-201{6}^{x}}{2(1+201{6}^{x})}$=-t(x),
即t(x)为奇函数,又t(x)=$\frac{1}{2}-\frac{1}{201{6}^{x}+1}$∈($-\frac{1}{2}$,$\frac{1}{2}$),
当t(x)=0时,[t(x)]+[t(-x)]=[f(x)-$\frac{1}{2}$]+[f(-x)-$\frac{1}{2}$]=0;
当t(x)≠0时,不妨设t(x)>0,则[t(x)]=0,[t(-x)]=-1,
则[t(x)]+[t(-x)]=[f(x)-$\frac{1}{2}$]+[f(-x)-$\frac{1}{2}$]=-1.
∴函数g(x)=[f(x)-$\frac{1}{2}$]+[f(-x)-$\frac{1}{2}$]的值域为{-1,0}.
故选:C.

点评 本题考查函数值域的求法,考查函数奇偶性的性质,考查逻辑思维能力和推理运算能力,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.化简$\sqrt{1-{{sin}^2}440°}$+$\sqrt{1-2sin80°cos80°}$=sin80°.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.设函数f(x)=x3-3x+a,0<a<1,若f(x)的三个零点为x1,x2,x3,且x1<x2<x3,则(  )
A.x1<-2B.x2<0C.0<x2<1D.x3>2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.设集合A={x|0≤x<5},B={x|x<0},则集合A∪B=(  )
A.{x|0≤x<5}B.{0}C.{x|x<5}D.R

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.一个口袋中装有4个红球,2个白球.每次从袋中随机摸出一个球,不放回地摸两次,在摸出的第一个是红球的条件下,摸出的第二个球是白球的概率是(  )
A.$\frac{1}{3}$B.$\frac{2}{5}$C.$\frac{3}{5}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.设集合S={0,1,2,3,4,5},A是S的一个子集,当x∈A时,若有x-1∉A且x+1∉A,则称x为集合A的一个“孤立元素”,写出S中所有无“孤立元素”的4元子集.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.关于x的二次方程x2+(m-1)x+1=0在区间[0,2]上有实根,则实数m的取值范围是(  )
A.(-∞,-1]B.(-∞,-1)C.[-1,+∞)D.(-1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=(x2-ax-a)ex
(1)当a=-1时,求f(x)在x=0处的切线方程.
(2)讨论函数f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.一个多面体的直观图和三视图如图,则多面体A-CDEF外接球的表面积是(  )
A.3B.4$\sqrt{3}$πC.12πD.48π

查看答案和解析>>

同步练习册答案