精英家教网 > 高中数学 > 题目详情

【题目】如图,在四棱锥中,底面是直角梯形,的中点.

1)求证:平面平面

2)求二面角的余弦值;

3)直线上是否存在一点,使得平面,若存在,求出的长,若不存在,请说明理由.

【答案】1)证明见解析.(2.(3)存在,.

【解析】

1)根据直角梯形可得,再根据即可得出平面,于是平面平面

2为所求二面角的平面角,利用余弦定理计算

3)连接,过,可得平面,利用相似三角形即可得出的长.

1)证明:四边形是直角梯形,

平面平面

,又平面

平面,又平面

∴平面平面.

2)由(1)可知平面

为二面角的平面角,

.

∴二面角的余弦值为.

(3)连接,过,连接.

平面.

,∴

,∴

.

所以直线上是否存在一点,使得平面,且.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在三梭柱ABCA1B1C1中,ACBCEF分别为ABA1B1的中点.

1)求证:AF∥平面B1CE

2)若A1B1,求证:平面B1CE⊥平面ABC.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某部影片的盈利额(即影片的票房收入与固定成本之差)记为,观影人数记为,其函数图象如图(1)所示.由于目前该片盈利未达到预期,相关人员提出了两种调整方案,图(2)、图(3)中的实线分别为调整后的函数图象.

给出下列四种说法:

①图(2)对应的方案是:提高票价,并提高成本;

②图(2)对应的方案是:保持票价不变,并降低成本;

③图(3)对应的方案是:提高票价,并保持成本不变;

④图(3)对应的方案是:提高票价,并降低成本.

其中,正确的说法是____________.(填写所有正确说法的编号)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某品牌电脑体验店预计全年购入台电脑,已知该品牌电脑的进价为/台,为节约资金决定分批购入,若每批都购入为正整数)台,且每批需付运费元,储存购入的电脑全年所付保管费与每批购入电脑的总价值(不含运费)成正比(比例系数为),若每批购入台,则全年需付运费和保管费.

1)记全年所付运费和保管费之和为元,求关于的函数.

2)若要使全年用于支付运费和保管费的资金最少,则每批应购入电脑多少台?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】αβ是两个不重合的平面,在下列条件中,可判断平面αβ平行的是(  )

A. mn是平面内两条直线,且

B. 内不共线的三点到的距离相等

C. 都垂直于平面

D. mn是两条异面直线,,且

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随着智能手机的普及,使用手机上网成为了人们日常生活的一部分,很多消费者对手机流量的需求越来越大.某通信公司为了更好地满足消费者对流量的需求,准备推出一款流量包.该通信公司选了人口规模相当的个城市采用不同的定价方案作为试点,经过一个月的统计,发现该流量包的定价: (单位:元/月)和购买总人数(单位:万人)的关系如表:

定价x(元/月)

20

30

50

60

年轻人(40岁以下)

10

15

7

8

中老年人(40岁以及40岁以上)

20

15

3

2

购买总人数y(万人)

30

30

10

10

(Ⅰ)根据表中的数据,请用线性回归模型拟合的关系,求出关于的回归方程;并估计元/月的流量包将有多少人购买?

(Ⅱ)若把元/月以下(不包括元)的流量包称为低价流量包,元以上(包括元)的流量包称为高价流量包,试运用独立性检验知识,填写下面列联,并通过计算说明是否能在犯错误的概率不超过的前提下,认为购买人的年龄大小与流量包价格高低有关?

定价x(元/月)

小于50元

大于或等于50元

总计

年轻人(40岁以下)

中老年人(40岁以及40岁以上)

总计

参考公式:其中

其中

参考数据:

0.10

0.05

0.025

0.010

0.005

0.001

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】改编自中国神话故事的动画电影《哪吒之魔童降世》自726日首映,在不到一个月的时间,票房收入就超过了38亿元,创造了中国动画电影的神话.小明和同学相约去电影院观看《哪吒之魔童降世》,影院的三个放映厅分别在730800830开始放映,小明和同学大约在740830之间到达影院,且他们到达影院的时间是随机的,那么他们到达后等待的时间不超过10分钟的概率是( )

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)=,若关于的方程恰好有 4 个不相等的实数解,则实数的取值范围为( )

A. B. C. D. (0,

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随着移动互联网的发展,与餐饮美食相关的手机APP软件层出不穷.现从某市使用A和B两款订餐软件的商家中分别随机抽取100个商家,对它们的“平均送达时间”进行统计,得到频率分布直方图如下.

(1)已知抽取的100个使用A款订餐软件的商家中,甲商家的“平均送达时间”为18分钟。现从使用A款订餐软件的商家中“平均送达时间”不超过20分钟的商家中随机抽取3个商家进行市场调研,求甲商家被抽到的概率;

(2)试估计该市使用A款订餐软件的商家的“平均送达时间”的众数及平均数;

(3)如果以“平均送达时间”的平均数作为决策依据,从A和B两款订餐软件中选择一款订餐,你会选择哪款?

查看答案和解析>>

同步练习册答案