精英家教网 > 高中数学 > 题目详情
在△ABC中,已知a-b=c(cosB-cosA),则△ABC的形状为
等腰三角形或直角三角形
等腰三角形或直角三角形
分析:把余弦定理代入已知条件,化简可得 2abc=c(c2-a2-b2+2ab),故有 c2=a2+b2,由此即可判断△ABC的形状.
解答:解:已知△ABC中,角A,B,C的对边分别为a,b,c,且a-b=c(cosA+cosB),
且由余弦定理可得cosA=
b2+c2-a2
2bc
,cosB=
a2+c2-b2
2ac

∴a-b=c(
b2+c2-a2
2bc
-
a2+c2-b2
2ac
),化简可得 2ab(a-b)=a(c2+b2-a2)-b(a2+c2-b2),
即:(b-a)(c2-a2+b2)=0
∴a=b或c2=a2+b2
故三角形为等腰三角形或直角三角形,
故答案为:等腰三角形或直角三角形
点评:本题主要考查余弦定理的应用,判断三角形的形状,式子的变形,是解题的关键,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在△ABC中,已知A、B、C成等差数列,求tg(
A
2
)+
3
tg(
A
2
)tg(
C
2
)+tg(
C
2
)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,已知A=45°,a=2,b=
2
,则B等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,已知a=
3
,b=
2
,1+2cos(B+C)=0,求:
(1)角A,B; 
(2)求BC边上的高.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,已知A=60°,
AB
AC
=1,则△ABC的面积为
3
2
3
2

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,已知a=1,b=2,cosC=
34

(1)求AB的长;
(2)求sinA的值.

查看答案和解析>>

同步练习册答案