精英家教网 > 高中数学 > 题目详情
设点P是曲线y=2x2上的一个动点,曲线y=2x2在点P处的切线为l,过点P且与直线l垂直的直线与曲线y=2x2的另一交点为Q,则PQ的最小值为_____________

试题分析:设P的坐标为(a,),由y‘=4x得l的斜率为4a,所以,直线PQ的斜率为=
所以,PQ的方程为:y-= (x-a),
与y=2x2联立,整理得,,所以,由韦达定理,
由弦长公式得,PQ=,利用导数研究此函数的最值,知,PQ的最小值为
点评:难题,本题综合性较强,考查知识覆盖面广,总体看解答思路比较明确,但计算繁琐,对学生能力要求较高。曲线切线的斜率,等于函数在切点的导函数值。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知的导函数,且,设

(Ⅰ)讨论在区间上的单调性;
(Ⅱ)求证:
(Ⅲ)求证:

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知是定义在上的奇函数,,则不等式的解集是     

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数
(1)当时,求的最小值;
(2)若直线对任意的都不是曲线的切线,求的取值范围;
(3)设,求的最大值的解析式

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知 ( )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数,其中的导函数.
(1)对满足的一切的值,都有,求实数的取值范围;
(2)设,当实数在什么范围内变化时,函数的图象与直线只有一个公共点.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数
(1)求的单调区间;
(2)当时,判断的大小,并说明理由;
(3)求证:当时,关于的方程:在区间上总有两个不同的解.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设函数
(1)若函数在x=1处与直线相切.
①求实数的值;②求函数上的最大值.
(2)当时,若不等式对所有的都成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

曲线yx3x+3在点(1,3)处的切线方程为________

查看答案和解析>>

同步练习册答案