精英家教网 > 高中数学 > 题目详情
如图,在长方体ABCD-A1B1C1D1中,AD=AA1=1,AB=2.E是CC1的中点,
(1)求锐二面角D-B1E-B的余弦值.
(2)试判断AC与面DB1E的位置关系,并说明理由.
(3)设M是棱AB上一点,若M到面DB1E的距离为
21
7
,试确定点M的位置.
建如图的立空间坐标系可得:D(0,0,0),A(1,0,0),C(0,2,0),B(1,2,0),A1(1,0,1),D1(0,0,1),C1(0,2,1),B1(1,2,1),由中点坐标公式可得E(0,2,
1
2
),
(1)设面DB1E的法向量是
n1
=(x,y,z)
,又
DE
=(0,2,
1
2
),
DB1
=(1,2,1),由
n1
DE
=0
n1
DB1
=0
2y+
1
2
z=0
x+2y+z=0
,令y=1,得x=2,z=-4
故有
n1
=(2,1,-4)
,同理可求得面BB1E的法向量为
n2
=(0,1,0)
,故两平面所成的税二面角的余弦cosθ=|
n1
n2
|
n1
||
n2
|
|=
1
21

(2)由题意,AC的方向向量的坐标是
AC
=(-1,2,0),又面DB1E的法向量
n1
=(2,1,-4)
,由于
AC
n1
=-2+2=0,故
AC
n1
,又AC不在面DB1E内,故AC与面DB1E的位置关系是平行.
(3)M是棱AB上一点,
设M(1,x,0),则
MD
=(-1,-X,0),
由(1)面DB1E的法向量
n1
=(2,1,-4)
,M到面DB1E的距离即向量
MD
在DB1E的法向量
n1
上的投影长度,
故有d=|
n1
MD
|
n1
|
|=|
-2-X
21
=|
21
7
|即得|2+x|=3解得x=1,或x=-1(由图知,此结论舍),
故M是AB的中点时,符合题意.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知△ABC是边长为l的等边三角形,D、E分别是AB、AC边上的点,AD = AE,F是BC的中点,AF与DE交于点G,将△ABF沿AF折起,得到三棱锥A-BCF,其中
(1)证明:DE∥平面BCF;
(2)证明:CF⊥平面ABF;
(3)当时,求三棱锥F-DEG的体积V.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图所示,正四棱锥P-ABCD中,侧棱PA与底面ABCD所成的角的正切值为
6
2

(1)求侧面PAD与底面ABCD所成的二面角的大小;
(2)若E是PB的中点,求异面直线PD与AE所成角的正切值;
(3)问在棱AD上是否存在一点F,使EF⊥侧面PBC,若存在,试确定点F的位置;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四棱锥中,底面ABCD是菱形,SA=SD=
39
AD=2
3
,且S-AD-B大小为120°,∠DAB=60°.
(1)求异面直线SA与BD所成角的正切值;
(2)求证:二面角A-SD-C的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,ABCD和ABEF都是边长为1的正方形,AM=FN,现将两个正方形沿AB折成一个直二面角,O∈AB,平面MON平面CBE.

(1)求角MON大小;
(2)设AO=x,当x为何值时,三棱锥A-MON的体积V最大?并求出最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在直三棱柱ABC-A1B1C1中,AC⊥BC,AC=BC=CC1,M是A1B的中点.
(Ⅰ)在线段B1C1上是否存在一点N,使得MN⊥平面A1BC?若存在,找出点N的位置幷证明;若不存在,请说明理由;
(Ⅱ)求平面A1AB和平面A1BC所成角的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知三棱锥D-ABC的三个侧面与底面全等,且AB=AC=
3
,BC=2,则以BC为棱,以面BCD与面BCA为面的二面角的余弦值为(  )
A.
3
3
B.
1
3
C.0D.-
1
2

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥S-ABCD中,底面ABCD是直角梯形,侧棱SA⊥底面ABCD,AB垂直于AD和BC,SA=AB=BC=2,AD=1,M是棱SB的中点.
(Ⅰ)求证:AM面SCD;
(Ⅱ)求面SCD与面SAB所成二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在三棱柱ABC-A1B1C1中,∠BCA=90°,AC=BC=2,A1在底面ABC上的射影恰为AC的中点D,又知BA1⊥AC1
(1)求证:AC1⊥平面A1BC;
(2)求二面角A1-BC-A的大小;
(3)求CC1到平面A1AB的距离.

查看答案和解析>>

同步练习册答案