精英家教网 > 高中数学 > 题目详情
已知幂函数f(x)=xm2-2m-3(m∈N+)的图象关于y轴对称,且在(0,+∞)上是减函数,求满足(3+2a)-
m
3
>(a-1)-
m
3
的a的取值范围.
考点:幂函数的性质,函数单调性的性质
专题:
分析:幂函数y=xα的图象关于y轴对称,且在(0,+∞)上是减函数.则必须满足α为偶数且α<0,则易得m的值.再根据幂函数y=xα的单调性,求满足(3+2a)-
m
3
>(a-1)-
m
3
的a的取值范围.
解答: 解:∵m∈N+,∴m=1,2.
又函数的图象关于y轴对称,∴m2-2m-3是偶数,
而22-2×2-3=-3为奇数,12-2×1-3=-4为偶数,∴m=1.…(5分)
∵函数y=x-
1
3
在(-∞,0),(0,+∞)上均为减函数,
(a-1)-
1
3
<(3+2a)-
1
3

∴a-1>3+2a>0或0>a-1>3+2a或a-1<0<3+2a…(9分)
解得a<-4或-
3
2
<a<1

故a的取值范围为{a|a<-4或-
3
2
<a<1
}      …(12分)
点评:幂函数y=xα,α<0时则为减函数;α>0时,幂函数为增函数.要注意α的不同,其定义域是不同的.解不等式时要注意.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=loga(x-1),g(x)=loga(6-2x)(a>0且a≠1).
(1)求函数φ(x)=f(x)+g(x)的定义域;
(2)试确定不等式f(x)≤g(x)中x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知A,B是抛物线y2=4x上异于顶点O的两个点,直线OA与直线OB的斜率之积为定值-4,△AOF,△BOF的面积为S1,S2,则S12+S22的最小值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系中,已知动点P满足PM⊥y轴,垂足为M,点N与点P关于x轴对称,且
OP
MN
=4,求动点P的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)化简
tan(π-α)cos(2π-α)sin(-α+
2
)
cos(-α-π)sin(-π-α)


(2)证明:
1+2sinθcosθ
cos2θ-sin2θ
=
1+tanθ
1-tanθ

查看答案和解析>>

科目:高中数学 来源: 题型:

已知an=2-n(n∈N*),从数列{an}中取出部分项,按原来的顺序组成一个各项和为
1
15
的无穷等比数列{bn},则{bn}的通项公式为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

角α的中边上有点(-3,4)则cosα=(  )
A、-
4
5
B、
4
5
C、
3
5
D、-
3
5

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)与g(x)分别由下表给出

x

1

2

3

4

f(x)

4

3

2

1

x

1

2

3

4

g(x)

3

1

4

2
那么f(g(3))=(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四棱锥P-ABCD的底面是边长为1的正方形,PA⊥CD,PA=1,PD=
2

(1)求证:CD∥平面PAB,
(2)求证:PA⊥平面ABCD;
(3)求四棱锥P-ABCD的体积;
(4)求直线PC与平面ABCD所成角的正弦值.

查看答案和解析>>

同步练习册答案