精英家教网 > 高中数学 > 题目详情
13.如图,在三棱柱ABC-A1B1C1中,底面为正三角形,侧棱垂直底面,AB=4,AA1=6,若E,F分别是棱BB1,CC1上的点,且BE=B1E,C1F=$\frac{1}{3}$CC1,则异面直线A1E与AF
所成角的余弦值为$\frac{\sqrt{2}}{10}$.

分析 以C为原点,CA为x轴,在平面ABC中过作AC的垂线为y轴,CC1为z轴,建立空间直角坐标系,利用向量法能求出异面直线A1E与AF所成角的余弦值.

解答 解:以C为原点,CA为x轴,在平面ABC中过作AC的垂线为y轴,CC1为z轴,建立空间直角坐标系,
∵在三棱柱ABC-A1B1C1中,底面为正三角形,侧棱垂直底面,AB=4,AA1=6,
E,F分别是棱BB1,CC${\;}_{{1}_{\;}}$上的点,且BE=B1E,C1F=$\frac{1}{3}$CC1
∴A1(4,0,6),E(2,2$\sqrt{3}$,3),F(0,0,4),A(4,0,0),
$\overrightarrow{{A}_{1}E}$=(-2,2$\sqrt{3}$,-3),$\overrightarrow{AF}$=(-4,0,4),
设异面直线A1E与AF所成角所成角为θ,
则cosθ=|$\frac{|\overrightarrow{{A}_{1}E}•\overrightarrow{AF}|}{|\overrightarrow{{A}_{1}E}||\overrightarrow{AF}|}$=$\frac{4}{4\sqrt{2}×5}=\frac{\sqrt{2}}{10}$.
∴异面直线A1E与AF所成角的余弦值为$\frac{\sqrt{2}}{10}$;
故答案为:$\frac{\sqrt{2}}{10}$.

点评 本题考查异面直线所成角的余弦值的求法,是中档题,解题时要认真审题,注意向量法的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

3.y=-x2+2ax+3在区间[2,6]上为减函数.则a的取值范围为a≤2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.若f(x)=$\sqrt{x}$+2 求f(9)=5.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.函数y=$\frac{x}{1+x}$的图象是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.甲乙两人乘车,共有5站,假设甲乙两人在每个站下车的可能性是相同的.则他们在同一站下车的概率为$\frac{1}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知{an}是由正数组成的数列,前n项和为Sn,且满足:an+$\frac{1}{2}$=$\sqrt{2{S}_{n}+\frac{1}{4}}$(n≥1,n∈N+),则an=n.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.若等比数列{an}满足 a4•a6+2a5•a7+a6•a8=36,则a5+a7等于(  )
A.6B.±6C.5D.±5

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知函数f(x)的定义域为(-1,1),则函数f(2x+1)的定义域为(-1,0).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.某企业投资1千万元用于一个高科技项目,每年可获利25%.由于企业间竞争激烈,每年底需要从利润中取出资金200万元进行科研、技术改造与广告投入,方能保持原有的利润增长率.经过多少年后,该项目的资金可以达到4倍的目标?

查看答案和解析>>

同步练习册答案