精英家教网 > 高中数学 > 题目详情
已知0<x<
π
4
,sin(
π
4
-x)=
5
13

(1)求cos(
π
4
-x)的值.
(2)求
cos2x
cos(
π
4
+x)
的值.
考点:两角和与差的正弦函数
专题:三角函数的求值
分析:(1)根据x的范围以及sin(
π
4
-x)=
5
13
,利用同角三角函数的基本关系求得cos(
π
4
-x)的值.
(2)把要求的式子利用二倍角公式化简为2cos(
π
4
-x),从而求得结果.
解答: 解:(1)∵0<x<
π
4
,sin(
π
4
-x)=
5
13

∴cos(
π
4
-x)=
12
13

(2)
cos2x
cos(
π
4
+x)
=
sin2(
π
2
-2x)
sin(
π
4
-x)
=
2sin(
π
4
-x)cos(
π
4
-x)
sin(
π
4
-x)
=2cos(
π
4
-x)=2×
12
13
=
24
13
点评:本题主要考查同角三角函数的基本关系,二倍角公式的应用,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知f(x)=sin(
π
2
+x
)cosx-sinxcos(π-x).
(1)求函数f(x)的单调递增区间;
(2)在△ABC中,已知A为锐角,f(A)=1,BC=2,B=
π
3
,求AC边的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2sin(ωx),其中常数ω>0.
(1)当ω=2时,x∈[-
π
6
π
3
],求f(x)的值域;
(2)若y=f(x)在[-
π
4
3
]单调递增,求ω的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

数列{an}的前n项为Sn,Sn=2an-3n(n∈N*).
(1)证明:数列{an+3}是等比数列;
(2)求数列{an}的通项公式an

查看答案和解析>>

科目:高中数学 来源: 题型:

某校要建一个面积为450平方米的矩形球场,要求球场的一面利用旧墙,其他各面用钢筋网围成,且在矩形一边的钢筋网的正中间要留一个3米的进出口(如图).设矩形的长为x米,钢筋网的总长度为y米.
(Ⅰ)列出y与x的函数关系式,并写出其定义域;
(Ⅱ)问矩形的长与宽各为多少米时,所用的钢筋网的总长度最小?
(Ⅲ)若由于地形限制,该球场的长和宽都不能超过25米,问矩形的长与宽各为多少米时,所用的钢筋网的总长度最小?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合M={x|x<-3,或x>5},P={x|(x-a)•(x-8)≤0}.
(1)求M∩P={x|5<x≤8}的充要条件;
(2)求实数a的一个值,使它成为M∩P={x|5<x≤8}的一个充分但不必要条件.

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在(-1,1)上的函数f(x)是减函数,且满足f(1-a)<f(a),求实数a取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

在等式1=
4
+
9
中的△与□处各填上一个正整数,使这两个正数的和最小:
 

查看答案和解析>>

科目:高中数学 来源: 题型:

复平面内,若z=m2(1+i )-m(4+i)-6i所对应的点在第二象限,则实数m的取值范围是
 

查看答案和解析>>

同步练习册答案