精英家教网 > 高中数学 > 题目详情

设数列{an}的前n项和为,已知a1=1,数学公式
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若数学公式,数列{bn}的前项和为Tn,n∈N*证明:Tn<2.

解:(Ⅰ)∵
当n≥2时,Sn=2Sn-1+n,两式相减得,
an+1=2an+1,两边加上1得出an+1+1=2(an+1),
又S2=2S1+1,a1=S1=1,∴a2=3,a2+1=2(a1+1)
所以数列{an+1}是公比为2的等比数列,首项a1+1=2,
数列{an+1}的通项公式为an+1=2•2n-1=2n
∴an=2n-1
(Ⅱ)∵an=2n-1,
∴bn===
Tn=
Tn=
两式相减得Tn=
Tn=2()=2<2.
分析:(Ⅰ)由,得当n≥2时,Sn=2Sn-1+n,两式相减得,an+1=2an+1,构造等比数列{an+1}并求其通项公式,再求出数列{an}的通项公式.
(Ⅱ)bn===,利用错位相消法求和.
点评:本题主要考查数列通项公式求解:利用了an与Sn关系以及构造法.形如an+1=pan+q递推数列,这种类型可转化为an+1+m=4(an+m)构造等比数列求解.还考查错位相消法求和.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设数列{an}的前n项的和为Sn,且Sn=3n+1.
(1)求数列{an}的通项公式;
(2)设bn=an(2n-1),求数列{bn}的前n项的和.

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列an的前n项的和为Sna1=
3
2
Sn=2an+1-3

(1)求a2,a3
(2)求数列an的通项公式;
(3)设bn=(2log
3
2
an+1)•an
,求数列bn的前n项的和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{an}的前n项和Sn=2an+
3
2
×(-1)n-
1
2
,n∈N*
(Ⅰ)求an和an-1的关系式;
(Ⅱ)求数列{an}的通项公式;
(Ⅲ)证明:
1
S1
+
1
S2
+…+
1
Sn
10
9
,n∈N*

查看答案和解析>>

科目:高中数学 来源: 题型:

不等式组
x≥0
y≥0
nx+y≤4n
所表示的平面区域为Dn,若Dn内的整点(整点即横坐标和纵坐标均为整数的点)个数为an(n∈N*
(1)写出an+1与an的关系(只需给出结果,不需要过程),
(2)求数列{an}的通项公式;
(3)设数列an的前n项和为SnTn=
Sn
5•2n
,若对一切的正整数n,总有Tn≤m成立,求m的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•郑州一模)设数列{an}的前n项和Sn=2n-1,则
S4
a3
的值为(  )

查看答案和解析>>

同步练习册答案