分析 (Ⅰ)设E为BC的中点,连结AE,推导出四边形AECD为平行四边形,AB⊥AC,AB⊥PA,由此能证明AB⊥PC.
(Ⅱ)以A为原点,分别以射线AE、AD、AP为x,y,z轴的正半轴,建立空间直角坐标系A-xyz.利用向量法能求出$\frac{PM}{PD}$的值.
解答 (本题满分(15分)![]()
证明:(Ⅰ)如图,设E为BC的中点,连结AE,
则AD=EC,AD∥EC,AD∥EC,所以四边形AECD为平行四边形,
故AE⊥BC,又AE=BE=EC=2$\sqrt{2}$,
所以∠ABC=∠ACB=45°,故AB⊥AC,…(3分)
又因为PA⊥平面ABCD,所以AB⊥PA,…(5分)
且PA∩AC=A,所以AB⊥平面PAC,故有AB⊥PC. …(7分)
解:(Ⅱ)如图,以A为原点,分别以射线AE、AD、AP为x,y,z轴的正半轴,建立空间直角坐标系A-xyz.
则A(0,0,0),E(2$\sqrt{2}$,0,0),B(2$\sqrt{2}$,-2$\sqrt{2}$,0),C(2$\sqrt{2}$,2$\sqrt{2}$,0),D(0,2$\sqrt{2}$,0),P(0,0,2),…(9分)
设$\overrightarrow{PM}$=λ$\overrightarrow{PD}$=(0,2$\sqrt{2}λ$,-2λ),(0≤λ≤1),解得M(0,2$\sqrt{2}λ$,2-2λ),…(10分)
设平面AMC的一个法向量为$\overrightarrow{{n}_{1}}$=(x,y,z),
则$\left\{\begin{array}{l}{\overrightarrow{{n}_{1}}•\overrightarrow{AC}=2\sqrt{2}x+2\sqrt{2}y=0}\\{\overrightarrow{{n}_{1}}•\overrightarrow{AM}=2\sqrt{2}λy+(2-2λ)z=0}\end{array}\right.$,…(11分)
令y=$\sqrt{2}$,得$x=-\sqrt{2},z=\frac{2λ}{λ-1}$,即${\overrightarrow n_1}=(-\sqrt{2},\sqrt{2},\frac{2λ}{λ-1})$.…(12分)
又平面ACD的一个法向量为${\overrightarrow n_2}=(0,0,1)$,…(13分)
由题知$|cos<{\overrightarrow n_1},{\overrightarrow n_2}>|=\frac{{|\overrightarrow{n_1}•\overrightarrow{n_2}|}}{{|{\overrightarrow{n_1}}|×|{\overrightarrow{n_2}}|}}=\frac{{|\frac{2λ}{λ-1}|}}{{\sqrt{4+{{(\frac{2λ}{λ-1})}^2}}}}$=$cos{45°}=\frac{{\sqrt{2}}}{2}$,
解得$λ=\frac{1}{2}$.
∴$\frac{PM}{PD}$的值为$\frac{1}{2}$.…(15分)
点评 本题考查线线垂直的证明,考查线段的比值的求法,是中档题,解题时要认真审题,注意向量法的合理运用.
科目:高中数学 来源: 题型:选择题
| A. | 若l∥n,n∥β,则l∥β | B. | 若α⊥β,n∥α,m∥β,则m⊥n | ||
| C. | 若α⊥β,β⊥γ,则α∥γ | D. | 若l⊥α,l⊥β,则α∥β |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 青年人 | 中年人 | 合计 | |
| 经常使用微信 | |||
| 不经常使用微信 | |||
| 合计 |
| P(k2≥k) | 0.010 | 0.001 |
| k | 6.635 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 高一 | 高二 | 总计 | |
| 合格人数 | 70 | x | 150 |
| 不合格人数 | y | 20 | 50 |
| 总计 | 100 | 100 | 200 |
| k0 | 5.024 | 6.635 | 7.879 | 10.828 |
| P(k2≥k0) | 0.025 | 0.010 | 0.005 | 0.001 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com