【题目】如图,边长为的正方形与梯形所在的平面互相垂直,其中, 为的中点.
(Ⅰ)证明: 平面;
(Ⅱ)求与平面所成角的余弦值.
【答案】(1)见解析(2)
【解析】试题分析:(Ⅰ)推导出OM∥AC,由此根据线面平行的判定定理能证明OM||平面ABCD.(Ⅱ)推导出BD⊥DA,因为平面ADEF⊥平面ABCD,从而可得BD⊥平面ADEF,由此得到∠BFD的余弦值即为所求.
试题解析:
证明:(Ⅰ)∵O,M分别为EA,EC的中点, ∴OM∥AC.
∵OM平面ABCD,AC平面ABCD….∴OM∥平面ABCD
解:(Ⅱ) ∵DC=BC=1,∠BCD=90°,
∴∵. ∴BD⊥DA.
∵平面ADEF⊥平面ABCD,平面ADEF∩平面ABCD=AD,BD平面ABCD,
∴BD⊥平面ADEF
∴∠BFD的余弦值即为所求.
在,
∴….
∴.
科目:高中数学 来源: 题型:
【题目】已知函数,函数的导函数为.
⑴ 若直线与曲线恒相切于同一定点,求的方程;
⑵ 若,求证:当时, 恒成立;
⑶ 若当时, 恒成立,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量x(吨)与相应的生产能耗y(吨标准煤)的几组对照数据.
x | 3 | 4 | 5 | 6 |
y | 2.5 | 3 | 4 | 4.5 |
(1)请画出上表数据的散点图;
(2)请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程;
(3)已知该厂技改前100吨甲产品的生产能耗为90吨标准煤.试根据(2)求出的线性回归方程,预测生产100吨甲产品的生产能耗比技改前降低多少吨标准煤.
(参考数值:3×2.5+4×3+5×4+6×4.5=66.5)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数,则(ⅰ)____________.
(ⅱ)给出下列三个命题:①函数是偶函数;②存在,使得以点为顶点的三角形是等腰三角形;③存在,使得以点为顶点的四边形为菱形.
其中,所有真命题的序号是____________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知定义在R的函数是偶函数,且满足上的解析式为,过点作斜率为k的直线l,若直线l与函数的图象至少有4个公共点,则实数k的取值范围是
A. B. C. D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】学校高一年级开设、、、、五门选修课,每位同学须彼此独立地选三课程,其中甲同学必选课程,不选课程,另从其余课程中随机任选两门课程.乙、丙两名同学从五门课程中随机任选三门课程.
(Ⅰ)求甲同学选中课程且乙同学未选中课程的概率.
(Ⅱ)用表示甲、乙、丙选中课程的人数之和,求的分布列和数学期望.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com