精英家教网 > 高中数学 > 题目详情
7.在等差数列{an}中,a3+a7=26,a1a9=25,求a11的值.

分析 由题意和等差数列的性质以及韦达定理可得a1,a9为方程x2-26x+25=0的实根,解方程可得数列的公差,可得所求.

解答 解:由题意和等差数列的性质可得a1+a9=a3+a7=26,
又a1a9=25,∴a1,a9为方程x2-26x+25=0的实根,
解方程可得a1=1且a9=25,或a1=25且a9=1,
当a1=1且a9=25时,数列的公差d=$\frac{25-1}{9-1}$=3,a11=1+10×3=31;
当a1=25且a9=1时,数列的公差d=-$\frac{25-1}{9-1}$=-3,a11=25+10×(-3)=-5.

点评 本题考查等差数列的通项公式,涉及韦达定理和分类讨论,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.已知集合A={x|ax2-bx+3=0,x∈R},B={x|x2-(b-1)x+2a=0,x∈R},若A∩B={1},则A∪B=(  )
A.{1,2,3}B.{1,3}C.{1,2}D.{1}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知正项等差数列{an}满足a1+a2014=2,则$\frac{1}{{a}_{2}}$+$\frac{1}{{a}_{2013}}$的最小值为(  )
A.1B.2C.2013D.2014

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如果f(1+$\frac{1}{x}$)=$\frac{x}{1-{x}^{2}}$,求函数f(x)的表达式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.求函数y=$\sqrt{3+2x-{x}^{2}}$的单调区间和值域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.函数f(x)=ln$\frac{1-x}{1+x}$的奇偶性和单调性如何(  )
A.奇函数,且在定义域内为增函数
B.奇函数,且在定义域内为减函数
C.偶函数,且在定义域内为减函数
D.非奇非偶函数,且在定义域内为减函数

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.光线每通过一块玻璃板,其强度要减少10%,那么至少要把几块这样的玻璃板重叠起来,才能使通过它们的光线强度在原强度的$\frac{1}{3}$以下?(lg3=0.4771)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.画出下列两个函数的图象,并写出各自的值域.
(1)y=2x2-4x-2,x$∈[-\frac{1}{2},2]$;
(2)y=|x2-1|

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.函数y=$\frac{1}{x+3}$在x∈[-1,1]上的最小值为(  )
A.$\frac{1}{2}$B.$\frac{1}{4}$C.2D.4

查看答案和解析>>

同步练习册答案