精英家教网 > 高中数学 > 题目详情
设数列{an}的前n项和为Sn=10n-n2,则|a1|+|a2|+…+|a15|等于(  )
A.150B.135C.125D.100
根据an=
S1,n=1
Sn-Sn-1,n≥2
,得
当n≥2时,an=Sn-Sn-1=-n2+10n-[-(n-1)2+10(n-1)]=-2n+11,
当n=1时,S1=a1=9也适合上式,
∴an=-2n+11,
据通项公式得a1>a2>…>a5>0>a6>a7>…>a15
∴|a1|+|a2|+…+|a15|
=(a1+a2+…+a5)-(a6+a7+…+a15
=2S5-S15
=2×(10×5-52)-(10×15-152
=50+75
=125.
故选C.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

设单调递减数列{an}前n项和Sn=-
1
2
a2n
+
1
2
an+21
,且a1>0;
(1)求{an}的通项公式;
(2)若bn=2n-1an,求{bn}前n项和Tn

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知数列an的前项和Sn=2n+2-4(n∈N*),函数f(x)对任意的x∈R都有f(x)+f(1-x)=1,数列{bn}满足bn=f(0)+f(
1
n
)+f(
2
n
)…+f(
n-1
n
)+f(1).
(1)分别求数列{an}、{bn}的通项公式;
(2)若数列{cn}满足cn=an•bn,Tn是数列{cn}的前项和,是否存在正实数k,使不等式k(n2-9n+26)Tn>4ncn对于一切的n∈N*恒成立?若存在请指出k的取值范围,并证明;若不存在请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设数列{an}的前n项和为Sn,且Sn=2n-1.数列{bn}满足b1=2,bn+1-2bn=8an
(1)求数列{an}的通项公式;
(2)证明:数列{
bn
2n
}为等差数列,并求{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

数列{an}的前n项和为Sn,a1=1,an+1=2Sn(n∈N+).
(Ⅰ)证明数列{Sn}是等比数列;
(Ⅱ)求数列{an}的通项an
(Ⅲ)求数列{n•an}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知等比数列{an}中,a1=3,a4=81,当数列{bn}满足bn=log3an,则数列{
1
bnbn+1
}
的前2013项和S2013为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设数列{an}的前n项的和Sn与an的关系是Sn=-an+1-
1
2n
,n∈N*
(1)求证:数列{2nan}为等差数列,并求数列{an}的通项;
(2)求数列{Sn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

数列的前n项和记为在直线上,.(1)若数列是等比数列,求实数的值;
(2)设各项均不为0的数列中,所有满足的整数的个数称为这个数列的“积异号数”,令),在(1)的条件下,求数列的“积异号数”

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知数列{an}的前n项和为Sn,且Sn=2n2+n,n∈N*,数列{bn}满足an=4log2bn+3,n∈N*
(1)求an,bn
(2)求数列{an?bn}的前n项和Tn

查看答案和解析>>

同步练习册答案