ÒÑÖªÊýÁÐanµÄÇ°ÏîºÍSn=2n+2-4(n¡ÊN*)£¬º¯Êýf£¨x£©¶ÔÈÎÒâµÄx¡ÊR¶¼ÓÐf£¨x£©+f£¨1-x£©=1£¬ÊýÁÐ{bn}Âú×ãbn=f£¨0£©+f£¨
1
n
£©+f£¨
2
n
£©¡­+f£¨
n-1
n
£©+f£¨1£©£®
£¨1£©·Ö±ðÇóÊýÁÐ{an}¡¢{bn}µÄͨÏʽ£»
£¨2£©ÈôÊýÁÐ{cn}Âú×ãcn=an•bn£¬TnÊÇÊýÁÐ{cn}µÄÇ°ÏîºÍ£¬ÊÇ·ñ´æÔÚÕýʵÊýk£¬Ê¹²»µÈʽk£¨n2-9n+26£©Tn£¾4ncn¶ÔÓÚÒ»ÇеÄn¡ÊN*ºã³ÉÁ¢£¿Èô´æÔÚÇëÖ¸³ökµÄÈ¡Öµ·¶Î§£¬²¢Ö¤Ã÷£»Èô²»´æÔÚÇë˵Ã÷ÀíÓÉ£®
£¨1£©¡ßSn=2n+2-4(n¡ÊN*)£¬
¡àn=1£¬a1=S1=21+2-4=4¡­£¨1·Ö£©
n¡Ý2£¬an=Sn-Sn-1=(2n+2-4)-(2n+1-4)=2n+1£¬
n=1ʱÂú×ãÉÏʽ£¬
¡àan=2n+1(n¡ÊN*)¡­£¨2·Ö£©
¡ßf£¨x£©+f£¨1-x£©=1£¬
¡àf(
1
n
)+f(
n-1
n
)=1
£¬¡­£¨3·Ö£©
¡ßbn=f£¨0£©+f£¨
1
n
£©+f£¨
2
n
£©¡­+f£¨
n-1
n
£©+f£¨1£©£¬¢Ù
¡àbn=f(1)+f(
n-1
n
)+f(
n-2
n
)+¡­
+f£¨1£©+f£¨0£©£¬¢Ú
¡à¢Ù+¢Ú£¬µÃ2bn=n+1¡àbn=
n+1
2
£®¡­£¨5·Ö£©
£¨2£©¡ßcn=an•bn£¬
¡àcn=(n+1)•2n¡­£¨6·Ö£©
¡àTn=2•21+3•22+4•23+¡­+(n+1)•2n£¬¢Ù
2Tn=2¡Á22+3¡Á23+4¡Á24+¡­+£¨n+1£©¡Á2n+1£¬¢Ú
¢Ù-¢Ú£¬µÃ-Tn=4+22+23+¡­+2n-(n+1)•2n+1¡­£¨8·Ö£©
¼´Tn=n•2n+1¡­£¨9·Ö£©
ҪʹµÃ²»µÈʽk£¨n2-9n+26£©Tn£¾4ncnºã³ÉÁ¢£¬
¡ß£¨n2-9n+26£©Tn£¾0ºã³ÉÁ¢£¬
¡àk£¾
4ncn
(n2-9n+26)Tn
¶ÔÓÚÒ»ÇеÄn¡ÊN*ºã³ÉÁ¢£¬
¼´k£¾
2(n+1)
n2-9n+26
¡­£¨11·Ö£©
Áîg(n)=
2(n+1)
n2-9n+26
(n¡ÊN*)
£¬
Ôòg(n)=
2(n+1)
(n+1)2-11(n+1)+36
=
2
(n+1)-11+
36
(n+1)
¡Ü
2
2
(n+1)•
36
(n+1)
-11
=2

µ±ÇÒ½öµ±n=5ʱµÈºÅ³ÉÁ¢£¬
¡àg£¨n£©max=2¡­£¨13·Ö£©
ËùÒÔk£¾2ΪËùÇ󣮡­£¨14·Ö£©
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º²»Ïê ÌâÐÍ£º½â´ðÌâ

ÒÑÖªµÈ²îÊýÁÐ{an}£¨n¡ÊN*£©µÄÇ°nÏîºÍΪSn£¬ÇÒa3=5£¬S3=9£®
£¨¢ñ£©ÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨¢ò£©ÉèµÈ±ÈÊýÁÐ{bn}£¨n¡ÊN*£©£¬Èôb2=a2£¬b3=a5£¬ÇóÊýÁÐ{bn}µÄÇ°nÏîºÍTn£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º²»Ïê ÌâÐÍ£º½â´ðÌâ

ÊýÁÐ{an}µÄÇ°nÏîºÍSn£¬a1=1£¬an+1=2Sn£®
£¨¢ñ£©ÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨¢ò£©Éèbn=log3an£¬ÇóÊýÁÐ{bn}µÄÇ°nÏîºÍTn£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º²»Ïê ÌâÐÍ£ºÌî¿ÕÌâ

ÒÑÖªÊýÁÐ{an}ÖУ¬a1=2£¬µã£¨an-1£¬an£©Âú×ãy=2x-1£¬Ôòa1+a2+¡­+a10=______£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º²»Ïê ÌâÐÍ£º½â´ðÌâ

ÒÑÖªÊýÁÐ{an}Âú×㣺a1=a+2£¨a¡Ý0£©£¬an+1=
an+a
£¬n¡ÊN*£®
£¨1£©Èôa=0£¬ÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨2£©Éèbn=|an+1-an|£¬ÊýÁеÄÇ°nÏîºÍΪSn£¬Ö¤Ã÷£ºSn£¼a1£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º²»Ïê ÌâÐÍ£º½â´ðÌâ

ÒÑÖª£ºÊýÁÐ{an}µÄÇ°nÏîºÍΪSn£¬ÇÒÂú×ãSn=2an-n£¬£¨n¡ÊN*£©£®
£¨¢ñ£©Çó£ºa1£¬a2µÄÖµ£»
£¨¢ò£©Çó£ºÊýÁÐ{an}µÄͨÏʽ£»
£¨¢ó£©ÈôÊýÁÐ{bn}µÄÇ°nÏîºÍΪTn£¬ÇÒÂú×ãbn=nan£¬£¨n¡ÊN*£©£¬ÇóÊýÁÐ{bn}µÄÇ°nÏîºÍTn£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º²»Ïê ÌâÐÍ£º½â´ðÌâ

ÊýÁÐ{an}µÄÇ°nÏîºÍSn=2n-1£¬ÊýÁÐ{bn}ÊÇÒÔa1ΪÊ×Ï¹«²îΪd£¨d¡Ù0£©µÄµÈ²îÊýÁУ¬ÇÒb1£¬b3£¬b9³ÉµÈ±ÈÊýÁУ®
£¨1£©ÇóÊýÁÐ{an}Óë{bn}µÄͨÏʽ
£¨2£©Èôcn=an+bn£¬ÇóÊýÁÐ{cn}µÄÇ°nÏîºÍTn£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º²»Ïê ÌâÐÍ£ºµ¥Ñ¡Ìâ

ÉèÊýÁÐ{an}µÄÇ°nÏîºÍΪSn=10n-n2£¬Ôò|a1|+|a2|+¡­+|a15|µÈÓÚ£¨¡¡¡¡£©
A£®150B£®135C£®125D£®100

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º²»Ïê ÌâÐÍ£ºÌî¿ÕÌâ

ÔÚÊýÁÐ{an}ÖУ¬a1=1£¬an+2+£¨-1£©nan=2£¬¼ÇSnÊÇÊýÁÐ{an}µÄÇ°nÏîºÍ£¬ÔòS60=______£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸