精英家教网 > 高中数学 > 题目详情
在数列{an}中,a1=1,an+2+(-1)nan=2,记Sn是数列{an}的前n项和,则S60=______.
由an+2+(-1)nan=2得,
当n为奇数时,an+2-an=2,
即数列{an}的奇数项构成等差数列,首项为1,公差为2,
当n为偶数时,an+2+an=2,
即a2+a4=a4+a6=…=2,
∴S60=(a1+a3+…+a59)+(a2+a4+…+a60
=(1+3+…)+(2+2+…)
=30×1+
30×29
2
+2×15=930,
故答案为:930.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知数列an的前项和Sn=2n+2-4(n∈N*),函数f(x)对任意的x∈R都有f(x)+f(1-x)=1,数列{bn}满足bn=f(0)+f(
1
n
)+f(
2
n
)…+f(
n-1
n
)+f(1).
(1)分别求数列{an}、{bn}的通项公式;
(2)若数列{cn}满足cn=an•bn,Tn是数列{cn}的前项和,是否存在正实数k,使不等式k(n2-9n+26)Tn>4ncn对于一切的n∈N*恒成立?若存在请指出k的取值范围,并证明;若不存在请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设数列{an}的前n项的和Sn与an的关系是Sn=-an+1-
1
2n
,n∈N*
(1)求证:数列{2nan}为等差数列,并求数列{an}的通项;
(2)求数列{Sn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知数列{an}满足:a1=1,an-an-1+2anan-1=0,(n∈N*,n>1)
(Ⅰ)求证数列{
1
an
}
是等差数列并求{an}的通项公式;
(Ⅱ)设bn=anan+1,求证:b1+b2+…+bn
1
2

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若单调递增数列满足,且,则的取值范围是     .

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

数列的前n项和记为在直线上,.(1)若数列是等比数列,求实数的值;
(2)设各项均不为0的数列中,所有满足的整数的个数称为这个数列的“积异号数”,令),在(1)的条件下,求数列的“积异号数”

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

数列中, 则          .

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

,当时,(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知数列{an}的前n项和为Sn,且Sn=2n2+n,n∈N*,数列{bn}满足an=4log2bn+3,n∈N*
(1)求an,bn
(2)求数列{an?bn}的前n项和Tn

查看答案和解析>>

同步练习册答案