精英家教网 > 高中数学 > 题目详情
设数列{an}的前n项和为Sn,且Sn=2n-1.数列{bn}满足b1=2,bn+1-2bn=8an
(1)求数列{an}的通项公式;
(2)证明:数列{
bn
2n
}为等差数列,并求{bn}的前n项和Tn
(1)当n=1时,a1=s1=21-1=1;
当n≥2时,an=Sn-Sn-1=(2n-1)-(2n-1-1)=2n-1
a1=1适合通项公式an=2n-1
∴an=2n-1(n∈N*);
(2)∵bn+1-2bn=8an
∴bn+1-2bn=2n+2
bn+1
2n+1
-
bn
2n
=2,又
b1
21
=1,
∴{
bn
2n
}是首项为1,公差为2的等等差数列.
bn
2n
=1+2(n-1)=2n-1,
∴bn=(2n-1)×2n
∴Tn=1×2+3×22+5×23+…+(2n-1)×2n
∴2Tn=1×22+3×23+…+(2n-3)×2n+(2n-1)×2n+1
∴-Tn=2+2(22+23+…+2n)-(2n-1)×2n+1
=2+2×
22(1-2n-1)
1-2
-(2n-1)×2n+1
=2n+2-6-(2n-1)×2n+1
=(3-2n)•2n+1-6,
∴Tn=(2n-3)•2n+1+6.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知数列{an}中,a1=-
1
128
,an≠0,Sn+1+Sn=3an+1+
1
64

(1)求an
(2)若bn=log4|an|,Tn=b1+b2+…+bn,则当n为何值时,Tn取最小值?求出该最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知数列{an}中,a1=2,点(an-1,an)满足y=2x-1,则a1+a2+…+a10=______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知:数列{an}的前n项和为Sn,且满足Sn=2an-n,(n∈N*).
(Ⅰ)求:a1,a2的值;
(Ⅱ)求:数列{an}的通项公式;
(Ⅲ)若数列{bn}的前n项和为Tn,且满足bn=nan,(n∈N*),求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

数列{an}的前n项和Sn=2n-1,数列{bn}是以a1为首项,公差为d(d≠0)的等差数列,且b1,b3,b9成等比数列.
(1)求数列{an}与{bn}的通项公式
(2)若cn=an+bn,求数列{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知正项数列{an}的前n项的乘积等于Tn=(
1
4
)
n2-6n
(n∈N*),bn=log2an,则数列{bn}的前n项和Sn中最大值是(  )
A.S6B.S5C.S4D.S3

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设数列{an}的前n项和为Sn=10n-n2,则|a1|+|a2|+…+|a15|等于(  )
A.150B.135C.125D.100

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知数列{an}是首项为1,公比为
1
3
的等比数列.
(1)求an的表达式;
(2)如果bn=(2n-1)an,求{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设数列是公比大于1的等比数列,为数列的前项和,已知,且构成等差数列.
(1)求数列的通项公式;
(2)令,求数列的前项的和.

查看答案和解析>>

同步练习册答案