精英家教网 > 高中数学 > 题目详情
已知函数f(x)=x2e-ax(a>0),求函数在[1,2]上的最大值.
分析:对函数f(x)=x2e-ax,进行求导,解出函数的极值点,然后根据极值点的值判断函数的单调区间,因区间[1,2]比较大,里面不是单调的增或者间,需要讨论,然后代入求解.
解答:解:∵f′(x)=2xe-ax+x2(-a)e-ax=e-ax(-ax2+2x)(2分)
令f′(x)>0,∵e-ax>0(3分)
∴-ax2+2x>0,解得0<x<
2
a
(4分)
∴f(x)在(-∞,0)和(
2
a
,+∞)内是减函数,在(0,
2
a
)内是增函数.(6分)
①当0<
2
a
<1,即a>2时,f(x)在(1,2)内是减函数.
∴在[1,2]上fmax(x)=f(1)=e-a;(8分)
②当1≤
2
a
≤2,即1≤a≤2时,f(x)在(1,
2
a
)内是增函数,在(
2
a
,2)内是减函数.
∴在[1,2]上fmax(x)=f(
2
a
)=4a-2e-2;(10分)
③当
2
a
>2即0<a<1时,f(x)在(1,2)是增函数.
∴在[1,2]上fmax(x)=f(2)=4e-2a.(12分)
综上所述,当0<a<1时,f(x)在[1,2]上的最大值为4e-2a
当1≤a≤2时,f(x)在[1,2]上的最大值为4a-2e-2
当a>2时,f(x)在[1,2]上的最大值为e-a.(13分)
点评:本题主要考查利用导数研究函数的单调性和极值、解不等式等基础知识,考查综合分析和解决问题的能力,此题是一道中档题;
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知函数f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分图象如图所示,则f(x)的解析式是(  )
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•深圳一模)已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•上海模拟)已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:上海模拟 题型:解答题

已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:深圳一模 题型:解答题

已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

同步练习册答案