(1)求圆C的方程.
(2)试探究圆C上是否存在异于原点的点Q,使Q到椭圆右焦点F的距离等于线段OF的长.若存在,请求出点Q的坐标;若不存在,请说明理由.
解: (1)设圆心坐标为(m,n)(m<0,n>0),则该圆的方程为(x-m)2+(y-n)2=8已知该圆与直线y=x相切,那么圆心到该直线的距离等于圆的半径,则
=2
即=4 ①
又圆与直线切于原点,将点(0,0)代入得
m2+n2=8 ②
联立方程①和②组成方程组解得
故圆的方程为(x+2)2+y2=8
(2)=5,∴a2=25,则椭圆的方程为+=1
其焦距c==4,右焦点为(4,0),那么=4。
要探求是否存在异于原点的点Q,使得该点到右焦点F的距离等于的长度4,我们可以转化为探求以右焦点F为顶点,半径为4的圆(x─4)2+y2=8与(1)所求的圆的交点数。
通过联立两圆的方程解得x=,y=
即存在异于原点的点Q(,),使得该点到右焦点F的距离等于的长。
科目:高中数学 来源: 题型:
2 |
x2 |
a2 |
y2 |
9 |
查看答案和解析>>
科目:高中数学 来源: 题型:
3 |
5 |
12 |
13 |
16 |
65 |
16 |
65 |
查看答案和解析>>
科目:高中数学 来源: 题型:
3 | t |
查看答案和解析>>
科目:高中数学 来源: 题型:
x2 |
a2 |
y2 |
b2 |
1 |
2 |
16 |
7 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com