精英家教网 > 高中数学 > 题目详情

【题目】已知数列满足对任意的都有,且

(1)求数列的通项公式;

(2)设数列的前项和为,不等式对任意的正整数恒成立,求实数的取值范围.

【答案】(1)(2)

【解析】试题分析:

1)当n=1n=2时,直接代入条件,可求得;

2)递推一项,然后做差得,所以;由于,即当时都有,所以数列是首项为1,公差为1的等差数列,故求得数列的通项公式;

3)由(2)知,则,利用裂项相消法得,根据单调递增得,要使不等式对任意正整数n恒成立,只要,即可求得实数a的取值范围.

试题解析:

1)解:当时,有

由于,所以

时,有

代入上式,由于,所以

2)解:由于

则有

,得

由于,所以

同样有

,得

所以

由于,即当时都有

所以数列是首项为1,公差为1的等差数列.

3)解:由(2)知,则,所以

数列单调递增 .

.

要使不等式对任意正整数n恒成立,只要

.

,即.

所以,实数a的取值范围是

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在直三棱柱ABC-A1B1C1中,AB=AC,E是BC的中点.

1求证:平面AB1E平面B1BCC1

2求证:平面AB1E.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某企业有甲、乙两个研发小组,他们研发新产品成功的概率分别为 .现安排甲组研发新产品A,乙组研发新产品B,设甲、乙两组的研发相互独立. (Ⅰ)求至少有一种新产品研发成功的概率;
(Ⅱ)若新产品A研发成功,预计企业可获利润120万元;若新产品B研发成功,预计企业可获利润100万元,求该企业可获利润的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义在上的偶函数满足,且当时, ,若在内关于的方程恰有3个不同的实数根,则的取值范围是 ( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)=6cos2 + sinωx﹣3(ω>0)在一个周期内的图象如图所示,A为图象的最高点,B、C为图象与x轴的交点,且△ABC为正三角形.

(1)求ω的值及函数f(x)的值域;
(2)若f(x0)= ,且x0∈(﹣ ),求f(x0+1)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若函数在区间上不单调,求的取值范围.

(2)令,是否存在实数,对任意,存在,使得成立?若存在,求的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中常数.

(1)当时,求函数的单调递增区间;

(2)当时,若函数有三个不同的零点,求的取值范围;

(3)设定义在上的函数在点处的切线方程为,当时,若内恒成立,则称为函数的“类对称点”,请你探究当时,函数是否存在“类对称点”,若存在,请最少求出一个“类对称点” 的横坐标;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】袋子里有编号为的五个球,某位教师从袋中任取两个不同的球. 教师把所取两球编号的和只告诉甲,其乘积只告诉乙,让甲、乙分别推断这两个球的编号.

甲说:我无法确定.”

乙说:我也无法确定.”

甲听完乙的回答以后,甲又说:我可以确定了.”

根据以上信息, 你可以推断出抽取的两球中

A. 一定有3号球 B. 一定没有3号球 C. 可能有5号球 D. 可能有6号球

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中实数为常数,为自然对数的底数.

(1)当时,求函数的单调区间;

(2)当时,解关于的不等式

(3)当时,如果函数不存在极值点,求的取值范围.

查看答案和解析>>

同步练习册答案