【题目】函数f(x)=6cos2
+
sinωx﹣3(ω>0)在一个周期内的图象如图所示,A为图象的最高点,B、C为图象与x轴的交点,且△ABC为正三角形. ![]()
(1)求ω的值及函数f(x)的值域;
(2)若f(x0)=
,且x0∈(﹣
,
),求f(x0+1)的值.
【答案】
(1)解:由已知得f(x)=6cos2
+
sinωx﹣3
=3cosωx+
sinωx=2
sin(ωx+
)
又△ABC为正三角形,且高为2
,可得BC=4.
∴函数f(x)的最小正周期为8,即
=8,
解得ω=
,∴f(x)=2
sin(
x+
),
∴函数f(x)的值域为:[﹣2
,2
];
(2)解:∵f(x0)=
,
∴2
sin(
x0+
)=
,
故sin(
x0+
)=
,
∵x0∈(﹣
,
),∴
x0+
∈(﹣
,
),
∴cos(
x0+
)=
= ![]()
∴f(x0+1)=2
sin(
x0+
+
)
=2
×
[sin(
x0+
)+cos(
x0+
)]= ![]()
【解析】(1)变形可得f(x)=2
sin(ωx+
),由又由三角形的知识和周期公式可得ω=
,由振幅的意义可得值域;(2)由已知和(1)的解析式可得sin(
x0+
)=
,进而由角的范围和同角三角函数基本关系可得cos(
x0+
)=
,代入f(x0+1)=2
sin(
x0+
+
)=2
×
[sin(
x0+
)+cos(
x0+
)]计算可得.
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=x﹣(a+1)lnx﹣
,其中a∈R.
(Ⅰ)求证:当a=1时,函数y=f(x)没有极值点;
(Ⅱ)求函数y=f(x)的单调增区间.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知正项数列{an},a1=1,an=an+12+2an+1(Ⅰ)求证:数列{log2(an+1)}为等比数列:
(Ⅱ)设bn=n1og2(an+1),数列{bn}的前n项和为Sn , 求证:1≤Sn<4.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】A,B两名同学在5次数学考试中的成绩统计如下面的茎叶图所示,若A,B两人的平均成绩分别是xA , xB , 观察茎叶图,下列结论正确的是( ) ![]()
A.xA<xB , B比A成绩稳定
B.xA>xB , B比A成绩稳定
C.xA<xB , A比B成绩稳定
D.xA>xB , A比B成绩稳定
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2017年3月14日,“ofo共享单车”终于来到芜湖,ofo共享单车又被亲切称作“小黄车”是全球第一个无桩共享单车平台,开创了首个“单车共享”模式.相关部门准备对该项目进行考核,考核的硬性指标是:市民对该项目的满意指数不低于0.8,否则该项目需进行整改,该部门为了了解市民对该项目的满意程度,随机访问了使用共享单车的100名市民,并根据这100名市民对该项目满意程度的评分,绘制了如下频率分布直方图: (I)为了了解部分市民对“共享单车”评分较低的原因,该部门从评分低于60分的市民中随机抽取2人进行座谈,求这2人评分恰好都在[50,60)的概率;
(II)根据你所学的统计知识,判断该项目能否通过考核,并说明理由.
(注:满意指数=
)![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com