精英家教网 > 高中数学 > 题目详情
已知点P1(a1,b1),P2(a2,b2),…,Pn(an,bn)(n为正整数)都在函数的图象上,且数列{an} 是a1=1,公差为d的等差数列.
(1)证明:数列{bn} 是公比为的等比数列;
(2)若公差d=1,以点Pn的横、纵坐标为边长的矩形面积为cn,求最小的实数t,若使cn≤t(t∈R,t≠0)对一切正整数n恒成立;
(3)对(2)中的数列{an},对每个正整数k,在ak与ak+1之间插入2k-1个3(如在a1与a2之间插入2个3,a2与a3之间插入21个3,a3与a4之间插入22个3,…,依此类推),得到一个新的数列{dn},设Sn是数列{dn}的前n项和,试求S1000
【答案】分析:(1)根据题中已知条件以及等差数列的基本性质,先求出bn的通项公式,然后证明为常数即可证明;
(2)先求出bn的通项公式,然后求出cn的表达式,可知数列cn从第二项起随n增大而减小,故cn≤c2,即t=c2,便可求出t的最小值;
(3)根据题意先求出dn的表达式,然后求出Sn的表达式,继而可以求得S1000的值.
解答:解:(1)由已知,(1分)
所以,(常数),(4分)
所以数列bn是等比数列.(5分)
(2)公差d=1,则an=n,得
,(7分)

∴c1=c2>c3>c4>cn,
数列cn从第二项起随n增大而减小(10分)
∴又,则.最小的实数t等于(12分)
(3)∵an=n,
∴数列dn中,从第一项a1开始到ak为止(含ak项),
共有k+2+21++2k-2=k+2k-1-1项,(14分)
k=10时k+2k-1-1=521(15分)
k=11时k+2k-1-1=1034>1000(16分)
∴S1000=(1+2+10)+990×3=3025(18分)
点评:本题考查了等差数列和等比数列的基本性质以及函数的综合应用,考查了学生的计算能力和对数列的综合掌握,解题时注意整体思想和转化思想的运用,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知点A(1,0),B(0,1)和互不相同的点P1,P2,P3,…,Pn,…,满足
OPn
=an
OA
+bn
OB
(n∈N*),其中an,bn分别为等差数列和等比数列,O为坐标原点,P1是线段AB的中点.
(1)求a1,b1的值;
(2)判断点P1,P2,P3,…,Pn,…能否在同一条直线上,并证明你的结论;
(3)设数列an的公差为2,在数列cn中,c1=1,c2=-13,cn+2-2cn+1+cn=an(n∈N*),求出cn取得最小值时n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2007•深圳一模)已知点A(1,0),B(0,1)和互不相同的点P1,P2,P3,…,Pn,…,满足
OPn
=an
OA
+bn
OB
(n∈N*)
,其中{an}、{bn}分别为等差数列和等比数列,O为坐标原点,若P1是线段AB的中点.
(Ⅰ)求a1,b1的值;
(Ⅱ)点P1,P2,P3,…,Pn,…能否共线?证明你的结论;
(Ⅲ)证明:对于给定的公差不零的{an},都能找到唯一的一个{bn},使得P1,P2,P3,…,Pn,…,都在一个指数函数的图象上.

查看答案和解析>>

科目:高中数学 来源: 题型:

数列{an}中,a1=1,a5=13,an+2=2an+1-an(n∈N*),数列{bn}中,b2=6,b3=3,bn+2=(n∈N*),已知点P1(a1,b1),P2(a2,b2),…,Pn(an,bn),…,则向量的坐标为    (    )

A.(3×1006,-4[1-()1006])                   B.(3×1004,-8[1-()1004])

C.(3×1002,-4[1-()1002])                   D.(3×1004,-4[1-()1004])

查看答案和解析>>

科目:高中数学 来源: 题型:

数列{an}中,a1=1,a5=13,an+2=2an+1-an(n∈N*),数列{bn}中,b2=6,b3=3,bn+2=(n∈N*),已知点P1(a1,b1),P2(a2,b2),…,Pn(an,bn),…,则向量的坐标为(    )

A.(3×1006,-4[1-()1006])         B.(3×1004,-8[1-()1004])

C.(3×1 002,-4[1-()1002])         D.(3×1004,-4[1-()1004])

查看答案和解析>>

科目:高中数学 来源:2007年广东省深圳市高考数学一模试卷(文科)(解析版) 题型:解答题

已知点A(1,0),B(0,1)和互不相同的点P1,P2,P3,…,Pn,…,满足,其中{an}、{bn}分别为等差数列和等比数列,O为坐标原点,若P1是线段AB的中点.
(Ⅰ)求a1,b1的值;
(Ⅱ)点P1,P2,P3,…,Pn,…能否共线?证明你的结论;
(Ⅲ)证明:对于给定的公差不零的{an},都能找到唯一的一个{bn},使得P1,P2,P3,…,Pn,…,都在一个指数函数的图象上.

查看答案和解析>>

同步练习册答案