8£®ÒÑÖªOΪԭµã£¬ÍÖÔ²C£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©µÄ×ó¶¥µãΪE£¬É϶¥µãΪF£¬¹ýÍÖÔ²CµÄÓÒ½¹µã×÷xÖáµÄ´¹Ïß½»Ö±ÏßEFÓÚµãD£¬ÈôÖ±ÏßODбÂÊÊÇÖ±ÏßEFµÄбÂʵÄ$\sqrt{2}$+1±¶£®
£¨1£©ÇóÍÖÔ²CµÄÀëÐÄÂÊ£»
£¨2£©ÈôÍÖÔ²CµÄ½¹¾àΪ2$\sqrt{2}$£¬ÉèM£¨x0£¬y0£©ÎªÍÖÔ²CÉϵ͝µã£¬A£¨-2$\sqrt{2}$£¬0£©£¬Ö±ÏßAMÓëÍÖÔ²½»ÓÚÁíÒ»µãP£¬ÇÒ$\overrightarrow{AM}$=¦Ë$\overrightarrow{AP}$£¬ÊÔ̽ÌÖÊÇ·ñ´æÔÚʵÊým£¬Ê¹µÃmx0-¦ËΪ¶¨Öµ£¿Èô´æÔÚ£¬Çó³ömµÄÖµ¼°´Ë¶¨Öµ£¬Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

·ÖÎö £¨1£©Ð´³öEFËùÔÚÖ±Ïß·½³Ì£¬µÃµ½DµÄ×ø±ê£¬ÓÉбÂʹØÏµ¼´¿ÉÇóµÃÍÖÔ²ÀëÐÄÂÊ£»
£¨2£©ÓÉ£¨1£©ÖÐËùÇóÍÖÔ²ÀëÐÄÂʼ°½¹¾àÇóµÃa£¬ÔÙÓÉÒþº¬Ìõ¼þÇóµÃb£¬ÔòÍÖÔ²·½³Ì¿ÉÇó£¬Éè³öPµÃ×ø±ê£¬ÓÉÏòÁ¿µÈʽ°ÑMµÄ×ø±êÓÃPµÃ×ø±ê±íʾ£¬ÔÙÓÉMÔÚÍÖÔ²ÉϿɵõÈʽ$\sqrt{2}{x}_{0}-¦Ë=-3$£¬¼´´æÔÚʵÊým=$\sqrt{2}$£¬Ê¹µÃmx0-¦ËΪ¶¨Öµ-3£®

½â´ð ½â£º£¨1£©Ö±ÏßEFµÄ·½³ÌΪy=$\frac{b}{a}£¨x+a£©$£¬½«x=c´úÈëµÃµãD£¨c£¬b+$\frac{bc}{a}$£©£¬
ÔòÖ±ÏßODµÄбÂÊΪ$\frac{b+\frac{bc}{a}}{c}=£¨\sqrt{2}+1£©¡Á\frac{b}{a}$£¬¿ÉµÃa=$\sqrt{2}c$£¬Ôòe=$\frac{c}{a}=\frac{\sqrt{2}}{2}$£»
£¨2£©ÓÉ£¨1£©Öª$\frac{c}{a}=\frac{\sqrt{2}}{2}$£¬ÓÖ2c=2$\sqrt{2}$£¬
¡àc=$\sqrt{2}$£¬a=2£¬Ôòb2=a2-c2=2£¬
¡àÍÖÔ²CµÄ·½³ÌΪ$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{2}=1$£®
ÉèP£¨x1£¬y1£©£¬Ôò$\overrightarrow{AM}=£¨{x}_{0}+2\sqrt{2}£¬{y}_{0}£©$£¬$\overrightarrow{AP}=£¨{x}_{1}+2\sqrt{2}£¬{y}_{1}£©$£¬
ÓÉ$\overrightarrow{AM}=¦Ë\overrightarrow{AP}$£¬µÃ$\left\{\begin{array}{l}{{x}_{0}+2\sqrt{2}=¦Ë£¨{x}_{1}+2\sqrt{2}£©}\\{{y}_{0}=¦Ë{y}_{1}}\end{array}\right.$£¬
´Ó¶ø$\left\{\begin{array}{l}{{x}_{0}=¦Ë{x}_{1}+2\sqrt{2}£¨¦Ë-1£©}\\{{y}_{0}=¦Ë{y}_{1}}\end{array}\right.$£¬
¡ß$\frac{{{x}_{0}}^{2}}{4}+\frac{{{y}_{0}}^{2}}{2}=1$£¬¡à$\frac{[¦Ë{x}_{1}+2\sqrt{2}£¨¦Ë-1£©]^{2}}{4}+\frac{£¨¦Ë{y}_{1}£©^{2}}{2}=1$£¬
¼´${¦Ë}^{2}£¨{{x}_{1}}^{2}+2{{y}_{1}}^{2}£©+4\sqrt{2}¦Ë£¨¦Ë-1£©{x}_{1}+8£¨¦Ë-1£©^{2}-4=0$£®
¡ß$\frac{{{x}_{1}}^{2}}{4}+\frac{{{y}_{1}}^{2}}{2}=1$£¬¡à${{x}_{1}}^{2}+2{{y}_{1}}^{2}=4$£¬´úÈëµÃ$4{¦Ë}^{2}+4\sqrt{2}¦Ë£¨¦Ë-1£©{x}_{1}+8£¨¦Ë-1£©^{2}-4=0$£®
¼´$4\sqrt{2}¦Ë£¨¦Ë-1£©{x}_{1}+4£¨¦Ë-1£©£¨3¦Ë-1£©=0$£®
ÓÉÌâÒâÖª£¬¦Ë¡Ù1£®
¹Ê${x}_{1}=-\frac{3¦Ë-1}{\sqrt{2}¦Ë}$£¬¡à${x}_{0}=\frac{1+¦Ë}{\sqrt{2}}-2\sqrt{2}$£¬¼´$\sqrt{2}{x}_{0}-¦Ë=-3$£®
¹Ê´æÔÚʵÊým=$\sqrt{2}$£¬Ê¹µÃmx0-¦ËΪ¶¨Öµ-3£®

µãÆÀ ±¾Ì⿼²éÍÖÔ²µÄ¼òµ¥ÐÔÖÊ£¬¿¼²éÁËÖ±ÏßÓëÍÖԲλÖùØÏµµÄÓ¦Óã¬ÌåÏÖÁËÕûÌåÔËËã˼Ïë·½·¨£¬ÊÇÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

18£®Èçͼ£¬ÔÚËÄÀâ×¶A-EFCBÖУ¬¡÷AEFΪµÈ±ßÈý½ÇÐΣ¬Æ½ÃæAEF¡ÍÆ½ÃæEFCB£¬EF¡ÎBC£¬BC=4£¬EF=2£¬¡ÏEBC=¡ÏFCB=60¡ã£¬OΪEFµÄÖе㣮
£¨1£©ÇóÖ¤£ºAO¡ÍBE£®
£¨2£©Çó¶þÃæ½ÇC-AE-BµÄÓàÏÒÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

19£®ÒÑÖª¼¯ºÏA={1£¬3£¬5£¬7}£¬B={x|£¨2x-1£©£¨x-5£©£¾0}£¬ÔòA¡É£¨∁RB£©£¨¡¡¡¡£©
A£®{1£¬3}B£®{1£¬3£¬5}C£®{3£¬5}D£®{3£¬5£¬7}

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

16£®ÈôÅ×ÎïÏßy2=4xÉϽö´æÔÚ3¸ö²»Í¬µÄµãµ½Ö±Ïßx-y+m=0µÄ¾àÀëΪ$\sqrt{2}$£¬ÔòmµÄֵΪ£¨¡¡¡¡£©
A£®1B£®-1C£®-2»ò3D£®-1»ò3

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

3£®ÍÖÔ²$\frac{{x}^{2}}{10}$+$\frac{{y}^{2}}{25}$=1ÉÏÒ»µãµ½Á½¸ö½¹µãµÄ¾àÀëÖ®ºÍΪ£¨¡¡¡¡£©
A£®2$\sqrt{10}$B£®2$\sqrt{15}$C£®5D£®10

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

13£®ÇúÏßf£¨x£©=$\frac{x-2sinx}{2cosx}$£¨-$\frac{¦Ð}{2}$£¼x£¼$\frac{¦Ð}{2}$£©Ôڵ㣨0£¬f£¨0£©£©´¦µÄÇÐÏß·½³ÌΪx+2y=0£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

20£®ÒÑÖªÖ±Ïßax+2y+2=0ÓëÖ±Ïß3x+4y+1=0»¥Ïà´¹Ö±£¬ÔòaµÄֵΪ£¨¡¡¡¡£©
A£®-$\frac{8}{3}$B£®-$\frac{3}{8}$C£®$\frac{3}{8}$D£®$\frac{8}{3}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

17£®ÒÑÖªsin£¨-¦È£©£¼0£¬cos£¨-¦È£©£¼0£¬Ôò½Ç¦ÈËùÔÚµÄÏóÏÞÊÇ£¨¡¡¡¡£©
A£®µÚÒ»ÏóÏÞB£®µÚ¶þÏóÏÞC£®µÚÈýÏóÏÞD£®µÚËÄÏóÏÞ

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

18£®Éèl£¬m£¬nΪÈýÌõ²»Í¬µÄÖ±Ïߣ¬¦Á£¬¦ÂΪÁ½¸ö²»Í¬µÄÆ½Ãæ£¬¸ø³öÏÂÁÐÎå¸öÅжϣº
¢ÙÈôl¡Í¦Á£¬m¡Íl£¬m¡Í¦ÂÔò¦Á¡Í¦Â£»
¢ÚÈôm?¦Â£¬nÊÇlÔÚ¦ÂÄÚµÄÉäÓ°£¬n¡Ím£¬Ôòm¡Íl£»
¢Ûµ×ÃæÊǵȱßÈý½ÇÐΣ¬²àÃæ¶¼ÊǵÈÑüÈý½ÇÐεÄÈýÀâ×¶ÊÇÕýÈýÀâ×¶£»
¢ÜÈôÇòµÄ±íÃæ»ýÀ©´óΪԭÀ´µÄ16±¶£¬ÔòÇòµÄÌå»ýÀ©´óΪԭÀ´µÄ32±¶£»
¢ÝÈôÔ²x2+y2=4ÉÏÇ¡ÓÐ3¸öµãµ½Ö±Ïߣºl£ºy=x+bµÄ¾àÀëΪ1£¬Ôòb=$\sqrt{2}$
ÆäÖÐÕýÈ·µÄΪ¢Ù¢Ú£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸