·ÖÎö £¨1£©Ð´³öEFËùÔÚÖ±Ïß·½³Ì£¬µÃµ½DµÄ×ø±ê£¬ÓÉбÂʹØÏµ¼´¿ÉÇóµÃÍÖÔ²ÀëÐÄÂÊ£»
£¨2£©ÓÉ£¨1£©ÖÐËùÇóÍÖÔ²ÀëÐÄÂʼ°½¹¾àÇóµÃa£¬ÔÙÓÉÒþº¬Ìõ¼þÇóµÃb£¬ÔòÍÖÔ²·½³Ì¿ÉÇó£¬Éè³öPµÃ×ø±ê£¬ÓÉÏòÁ¿µÈʽ°ÑMµÄ×ø±êÓÃPµÃ×ø±ê±íʾ£¬ÔÙÓÉMÔÚÍÖÔ²ÉϿɵõÈʽ$\sqrt{2}{x}_{0}-¦Ë=-3$£¬¼´´æÔÚʵÊým=$\sqrt{2}$£¬Ê¹µÃmx0-¦ËΪ¶¨Öµ-3£®
½â´ð ½â£º£¨1£©Ö±ÏßEFµÄ·½³ÌΪy=$\frac{b}{a}£¨x+a£©$£¬½«x=c´úÈëµÃµãD£¨c£¬b+$\frac{bc}{a}$£©£¬
ÔòÖ±ÏßODµÄбÂÊΪ$\frac{b+\frac{bc}{a}}{c}=£¨\sqrt{2}+1£©¡Á\frac{b}{a}$£¬¿ÉµÃa=$\sqrt{2}c$£¬Ôòe=$\frac{c}{a}=\frac{\sqrt{2}}{2}$£»![]()
£¨2£©ÓÉ£¨1£©Öª$\frac{c}{a}=\frac{\sqrt{2}}{2}$£¬ÓÖ2c=2$\sqrt{2}$£¬
¡àc=$\sqrt{2}$£¬a=2£¬Ôòb2=a2-c2=2£¬
¡àÍÖÔ²CµÄ·½³ÌΪ$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{2}=1$£®
ÉèP£¨x1£¬y1£©£¬Ôò$\overrightarrow{AM}=£¨{x}_{0}+2\sqrt{2}£¬{y}_{0}£©$£¬$\overrightarrow{AP}=£¨{x}_{1}+2\sqrt{2}£¬{y}_{1}£©$£¬
ÓÉ$\overrightarrow{AM}=¦Ë\overrightarrow{AP}$£¬µÃ$\left\{\begin{array}{l}{{x}_{0}+2\sqrt{2}=¦Ë£¨{x}_{1}+2\sqrt{2}£©}\\{{y}_{0}=¦Ë{y}_{1}}\end{array}\right.$£¬
´Ó¶ø$\left\{\begin{array}{l}{{x}_{0}=¦Ë{x}_{1}+2\sqrt{2}£¨¦Ë-1£©}\\{{y}_{0}=¦Ë{y}_{1}}\end{array}\right.$£¬
¡ß$\frac{{{x}_{0}}^{2}}{4}+\frac{{{y}_{0}}^{2}}{2}=1$£¬¡à$\frac{[¦Ë{x}_{1}+2\sqrt{2}£¨¦Ë-1£©]^{2}}{4}+\frac{£¨¦Ë{y}_{1}£©^{2}}{2}=1$£¬
¼´${¦Ë}^{2}£¨{{x}_{1}}^{2}+2{{y}_{1}}^{2}£©+4\sqrt{2}¦Ë£¨¦Ë-1£©{x}_{1}+8£¨¦Ë-1£©^{2}-4=0$£®
¡ß$\frac{{{x}_{1}}^{2}}{4}+\frac{{{y}_{1}}^{2}}{2}=1$£¬¡à${{x}_{1}}^{2}+2{{y}_{1}}^{2}=4$£¬´úÈëµÃ$4{¦Ë}^{2}+4\sqrt{2}¦Ë£¨¦Ë-1£©{x}_{1}+8£¨¦Ë-1£©^{2}-4=0$£®
¼´$4\sqrt{2}¦Ë£¨¦Ë-1£©{x}_{1}+4£¨¦Ë-1£©£¨3¦Ë-1£©=0$£®
ÓÉÌâÒâÖª£¬¦Ë¡Ù1£®
¹Ê${x}_{1}=-\frac{3¦Ë-1}{\sqrt{2}¦Ë}$£¬¡à${x}_{0}=\frac{1+¦Ë}{\sqrt{2}}-2\sqrt{2}$£¬¼´$\sqrt{2}{x}_{0}-¦Ë=-3$£®
¹Ê´æÔÚʵÊým=$\sqrt{2}$£¬Ê¹µÃmx0-¦ËΪ¶¨Öµ-3£®
µãÆÀ ±¾Ì⿼²éÍÖÔ²µÄ¼òµ¥ÐÔÖÊ£¬¿¼²éÁËÖ±ÏßÓëÍÖԲλÖùØÏµµÄÓ¦Óã¬ÌåÏÖÁËÕûÌåÔËËã˼Ïë·½·¨£¬ÊÇÖеµÌ⣮
| Äê¼¶ | ¸ßÖÐ¿Î³Ì | Äê¼¶ | ³õÖÐ¿Î³Ì |
| ¸ßÒ» | ¸ßÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÒ» | ³õÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ß¶þ | ¸ß¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õ¶þ | ³õ¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ßÈý | ¸ßÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÈý | ³õÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | {1£¬3} | B£® | {1£¬3£¬5} | C£® | {3£¬5} | D£® | {3£¬5£¬7} |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | 1 | B£® | -1 | C£® | -2»ò3 | D£® | -1»ò3 |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | 2$\sqrt{10}$ | B£® | 2$\sqrt{15}$ | C£® | 5 | D£® | 10 |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | -$\frac{8}{3}$ | B£® | -$\frac{3}{8}$ | C£® | $\frac{3}{8}$ | D£® | $\frac{8}{3}$ |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | µÚÒ»ÏóÏÞ | B£® | µÚ¶þÏóÏÞ | C£® | µÚÈýÏóÏÞ | D£® | µÚËÄÏóÏÞ |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¹ú¼ÊѧУÓÅÑ¡ - Á·Ï°²áÁбí - ÊÔÌâÁбí
ºþ±±Ê¡»¥ÁªÍøÎ¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨Æ½Ì¨ | ÍøÉÏÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | µçÐÅթƾٱ¨×¨Çø | ÉæÀúÊ·ÐéÎÞÖ÷ÒåÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | ÉæÆóÇÖȨ¾Ù±¨×¨Çø
Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com