分析 设出底面边长,求出正四棱锥的高,写出体积表达式,利用求导求得最大值时,高的值.
解答 解:设底面边长为a,则高h=$\sqrt{{SA}^{2}-({\frac{\sqrt{2}a}{2})}^{2}}$=$\sqrt{12-\frac{{a}^{2}}{2}}$,所以体积V=$\frac{1}{3}$a2h=$\frac{1}{3}$$\sqrt{12{a}^{4}-\frac{{a}^{6}}{2}}$,
设y=12a4-$\frac{1}{2}$a6,则y′=48a3-3a5,当y取最值时,y′=48a3-3a5=0,解得a=0或a=4时,当a=4时,体积最大,
此时h=$\sqrt{12-\frac{{a}^{2}}{2}}$=2,
故答案为:2.
点评 本试题主要考查椎体的体积,考查高次函数的最值问题的求法.是中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ②④ | B. | ①③ | C. | ①④ | D. | ①②③ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 充分不必要条件 | B. | 必要不充分条件 | ||
| C. | 充要条件 | D. | 既不充分又不必要条件 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{2}$ | B. | -$\frac{1}{2}$ | C. | $\frac{\sqrt{3}}{2}$ | D. | -$\frac{\sqrt{3}}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com