【题目】如图是一个半径为2千米,圆心角为
的扇形游览区的平面示意图
是半径
上一点,
是圆弧
上一点,且
.现在线段
,线段
及圆弧
三段所示位置设立广告位,经测算广告位出租收入是:线段
处每千米为
元,线段
及圆弧
处每千米均为
元.设
弧度,广告位出租的总收入为
元.
![]()
(1)求
关于
的函数解析式,并指出该函数的定义域;
(2)试问:
为何值时,广告位出租的总收入最大?并求出其最大值.
科目:高中数学 来源: 题型:
【题目】已知椭圆
:
过点
,离心率为
.
(1)求椭圆
的方程;
(2)
,
是过点
且互相垂直的两条直线,其中
交圆
于
,
两点,
交椭圆
于另一个点
,求
面积取得最大值时直线
的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某种设备随着使用年限的增加,每年的维护费相应增加
现对一批该设备进行调查,得到这批设备自购入使用之日起,前五年平均每台设备每年的维护费用大致如表:
年份 | 1 | 2 | 3 | 4 | 5 |
维护费 |
|
|
|
|
|
Ⅰ
求y关于t的线性回归方程;
Ⅱ
若该设备的价格是每台5万元,甲认为应该使用满五年换一次设备,而乙则认为应该使用满十年换一次设备,你认为甲和乙谁更有道理?并说明理由.
参考公式:
,![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点A(t,1)为函数y=ax2+bx+4(a,b为常数,且a≠0)与y=x图象的交点.
(1)求t;
(2)若函数y=ax2+bx+4的图象与x轴只有一个交点,求a,b;
(3)若1≤a≤2,设当
≤x≤2时,函数y=ax2+bx+4的最大值为m,最小值为n,求m﹣n的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某企业2017年的纯利润为500万元,因设备老化等原因,企业的生产能力逐年下降,若不能进行技术改造,预测从2018年起每年比上一年纯利润减少20万元,2018年初该企业一次性投入资金600万元进行技术改造,预测在未扣除技术改造资金的情况下,第
年(以2018年为第一年)的利润为
万元(
为正整数).
(1)设从今年起的前
年,若该企业不进行技术改造的累计纯利润为
万元,进行技术改造后的累计纯利润为
万元(须扣除技术改造资金),求
,
的表达式;
(2)依上述预测,从2018年起该企业至少经过多少年,进行技术改造后的累计利润超过不进行技术改造的累计纯利润?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
,
(
为常数).
(1)若函数
与函数
在
处有相同的切线,求实数
的值;
(2)若
,且
,证明:
;
(3)若对任意
,不等式恒
成立,求实数
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点P(x0,y0)(x0≠
)在椭圆C:
(a>b>0)上,若点M为椭圆C的右顶点,且PO⊥PM (O为坐标原点),则椭圆C的离心率e的取值范围是
A. (0,
) B. (0,1) C. (
,1) D. (0,
)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com